1,508 research outputs found
Nonlinear wave propagation and reconnection at magnetic X-points in the Hall MHD regime
The highly dynamical, complex nature of the solar atmosphere naturally
implies the presence of waves in a topologically varied magnetic environment.
Here, the interaction of waves with topological features such as null points is
inevitable and potentially important for energetics. The low resistivity of the
solar coronal plasma implies that non-MHD effects should be considered in
studies of magnetic energy release in this environment. This paper investigates
the role of the Hall term in the propagation and dissipation of waves, their
interaction with 2D magnetic X-points and the nature of the resulting
reconnection. A Lagrangian remap shock-capturing code (Lare2d) is used to study
the evolution of an initial fast magnetoacoustic wave annulus for a range of
values of the ion skin depth in resistive Hall MHD. A magnetic null-point
finding algorithm is also used to locate and track the evolution of the
multiple null-points that are formed in the system. Depending on the ratio of
ion skin depth to system size, our model demonstrates that Hall effects can
play a key role in the wave-null interaction. In particular, the initial
fast-wave pulse now consists of whistler and ion-cyclotron components; the
dispersive nature of the whistler wave leads to (i) earlier interaction with
the null, (ii) the creation of multiple additional, transient nulls and, hence,
an increased number of energy release sites. In the Hall regime, the relevant
timescales (such as the onset of reconnection and the period of the oscillatory
relaxation) of the system are reduced significantly, and the reconnection rate
is enhanced.Comment: 13 pages, 10 figure
Accelerated Electrons in Cassiopeia A: An Explanation for the Hard X-ray Tail
We propose a model for the hard X-ray (> 10 keV) emission observed from the
supernova remnant Cas A. Lower hybrid waves are generated in strong (mG)
magnetic fields, generally believed to reside in this remnant, by shocks
reflected from density inhomogeneities. These then accelerate electrons to
energies of several tens of keV. Around 4% of the x-ray emitting plasma
electrons need to be in this accelerated distribution, which extends up to
electron velocities of order the electron Alfven speed, and is directled along
magnetic field lines. Bremsstrahlung from these electrons produces the observed
hard x-ray emission. Such waves and accelerated electrons have been observed in
situ at Comet Halley, and we discuss the viability of the extrapolation from
this case to the parameters relevant to Cas A.Comment: 20 pages, 3 figures, aasTeX502, accepted in Ap
Comparative Analysis of Non-thermal Emissions and Study of Electron Transport in a Solar Flare
We study the non-thermal emissions in a solar flare occurring on 2003 May 29
by using RHESSI hard X-ray (HXR) and Nobeyama microwave observations. This
flare shows several typical behaviors of the HXR and microwave emissions: time
delay of microwave peaks relative to HXR peaks, loop-top microwave and
footpoint HXR sources, and a harder electron energy distribution inferred from
the microwave spectrum than from the HXR spectrum. In addition, we found that
the time profile of the spectral index of the higher-energy (\gsim 100 keV)
HXRs is similar to that of the microwaves, and is delayed from that of the
lower-energy (\lsim 100 keV) HXRs. We interpret these observations in terms
of an electron transport model called {\TPP}. We numerically solved the
spatially-homogeneous {\FP} equation to determine electron evolution in energy
and pitch-angle space. By comparing the behaviors of the HXR and microwave
emissions predicted by the model with the observations, we discuss the
pitch-angle distribution of the electrons injected into the flare site. We
found that the observed spectral variations can qualitatively be explained if
the injected electrons have a pitch-angle distribution concentrated
perpendicular to the magnetic field lines rather than isotropic distribution.Comment: 32 pages, 12 figures, accepted for publication in The Astronomical
Journa
On the Nature of MeV-blazars
Broad-band spectra of the FSRQ (flat-spectrum-radio quasars) detected in the
high energy gamma-ray band imply that there may be two types of such objects:
those with steep gamma-ray spectra, hereafter called MeV-blazars, and those
with flat gamma-ray spectra, GeV-blazars. We demonstrate that this difference
can be explained in the context of the ERC (external-radiation-Compton) model
using the same electron injection function. A satisfactory unification is
reachable, provided that: (a) spectra of GeV-blazars are produced by internal
shocks formed at the distances where cooling of relativistic electrons in a jet
is dominated by Comptonization of broad emission lines, whereas spectra of
MeV-blazars are produced at the distances where cooling of relativistic
electrons is dominated by Comptonization of near-IR radiation from hot dust;
(b) electrons are accelerated via a two step process and their injection
function takes the form of a double power-law, with the break corresponding to
the threshold energy for the diffusive shock acceleration. Direct predictions
of our model are that, on average, variability time scales of the MeV-blazars
should be longer than variability time scales of the GeV-blazars, and that both
types of the blazar phenomenon can appear in the same object.Comment: Accepted for publication in the Astrophysical Journa
Nonthermal Emission from a Supernova Remnant in a Molecular Cloud
In evolved supernova remnants (SNRs) interacting with molecular clouds, such
as IC 443, W44, and 3C391, a highly inhomogeneous structure consisting of a
forward shock of moderate Mach number, a cooling layer, a dense radiative shell
and an interior region filled with hot tenuous plasma is expected. We present a
kinetic model of nonthermal electron injection, acceleration and propagation in
that environment and find that these SNRs are efficient electron accelerators
and sources of hard X- and gamma-ray emission. The energy spectrum of the
nonthermal electrons is shaped by the joint action of first and second order
Fermi acceleration in a turbulent plasma with substantial Coulomb losses.
Bremsstrahlung, synchrotron, and inverse Compton radiation of the nonthermal
electrons produce multiwavelength photon spectra in quantitative agreement with
the radio and the hard emission observed by ASCA and EGRET from IC 443. We
distinguish interclump shock wave emission from molecular clump shock wave
emission accounting for a complex structure of molecular cloud. Spatially
resolved X- and gamma- ray spectra from the supernova remnants IC 443, W44, and
3C391 as might be observed with BeppoSAX, Chandra XRO, XMM, INTEGRAL and GLAST
would distinguish the contribution of the energetic lepton component to the
gamma-rays observed by EGRET.Comment: 14 pages, 4 figure, Astrophysical Journal, v.538, 2000 (in press
On Collisionless Electron-Ion Temperature Equilibration in the Fast Solar Wind
We explore a mechanism, entirely new to the fast solar wind, of electron
heating by lower hybrid waves to explain the shift to higher charge states
observed in various elements in the fast wind at 1 A.U. relative to the
original coronal hole plasma. This process is a variation on that previously
discussed for two temperature accretion flows by Begelman & Chiueh. Lower
hybrid waves are generated by gyrating minor ions (mainly alpha-particles) and
become significant once strong ion cyclotron heating sets in beyond 1.5 R_sun.
In this way the model avoids conflict with SUMER electron temperature
diagnostic measurements between 1 and 1.5 R_sun. The principal requirement for
such a process to work is the existence of density gradients in the fast solar
wind, with scale length of similar order to the proton inertial length. Similar
size structures have previously been inferred by other authors from radio
scintillation observations and considerations of ion cyclotron wave generation
by global resonant MHD waves.Comment: 32 pages including 11 figures, 4 tables, accepted by Ap
Solar Flares as Cascades of Reconnecting Magnetic Loops
A model for the solar coronal magnetic field is proposed where multiple
directed loops evolve in space and time. Loops injected at small scales are
anchored by footpoints of opposite polarity moving randomly on a surface.
Nearby footpoints of the same polarity aggregate, and loops can reconnect when
they collide. This may trigger a cascade of further reconnection, representing
a solar flare. Numerical simulations show that a power law distribution of
flare energies emerges, associated with a scale free network of loops,
indicating self-organized criticality.Comment: 4 pages, 4 figures, To be published in Phys. Rev. Let
Shock Acceleration of Cosmic Rays - a critical review
Motivated by recent unsuccessful efforts to detect the predicted flux of TeV
gamma-rays from supernova remnants, we present a critical examination of the
theory on which these predictions are based. Three crucial problems are
identified: injection, maximum achievable particle energy and spectral index.
In each case significant new advances in understanding have been achieved,
which cast doubt on prevailing paradigms such as Bohm diffusion and
single-fluid MHD. This indicates that more realistic analytical models, backed
by more sophisticated numerical techniques should be employed to obtain
reliable predictions. Preliminary work on incorporating the effects of
anomalous transport suggest that the resulting spectrum should be significantly
softer than that predicted by conventional theory.Comment: 8 pages, invited review presented at the 17th ECRS, Lodz, July 2000;
to appear in Journal of Physics G: Nuclear and Particle Physic
- …
