1,508 research outputs found

    Nonlinear wave propagation and reconnection at magnetic X-points in the Hall MHD regime

    Get PDF
    The highly dynamical, complex nature of the solar atmosphere naturally implies the presence of waves in a topologically varied magnetic environment. Here, the interaction of waves with topological features such as null points is inevitable and potentially important for energetics. The low resistivity of the solar coronal plasma implies that non-MHD effects should be considered in studies of magnetic energy release in this environment. This paper investigates the role of the Hall term in the propagation and dissipation of waves, their interaction with 2D magnetic X-points and the nature of the resulting reconnection. A Lagrangian remap shock-capturing code (Lare2d) is used to study the evolution of an initial fast magnetoacoustic wave annulus for a range of values of the ion skin depth in resistive Hall MHD. A magnetic null-point finding algorithm is also used to locate and track the evolution of the multiple null-points that are formed in the system. Depending on the ratio of ion skin depth to system size, our model demonstrates that Hall effects can play a key role in the wave-null interaction. In particular, the initial fast-wave pulse now consists of whistler and ion-cyclotron components; the dispersive nature of the whistler wave leads to (i) earlier interaction with the null, (ii) the creation of multiple additional, transient nulls and, hence, an increased number of energy release sites. In the Hall regime, the relevant timescales (such as the onset of reconnection and the period of the oscillatory relaxation) of the system are reduced significantly, and the reconnection rate is enhanced.Comment: 13 pages, 10 figure

    Accelerated Electrons in Cassiopeia A: An Explanation for the Hard X-ray Tail

    Get PDF
    We propose a model for the hard X-ray (> 10 keV) emission observed from the supernova remnant Cas A. Lower hybrid waves are generated in strong (mG) magnetic fields, generally believed to reside in this remnant, by shocks reflected from density inhomogeneities. These then accelerate electrons to energies of several tens of keV. Around 4% of the x-ray emitting plasma electrons need to be in this accelerated distribution, which extends up to electron velocities of order the electron Alfven speed, and is directled along magnetic field lines. Bremsstrahlung from these electrons produces the observed hard x-ray emission. Such waves and accelerated electrons have been observed in situ at Comet Halley, and we discuss the viability of the extrapolation from this case to the parameters relevant to Cas A.Comment: 20 pages, 3 figures, aasTeX502, accepted in Ap

    Comparative Analysis of Non-thermal Emissions and Study of Electron Transport in a Solar Flare

    Full text link
    We study the non-thermal emissions in a solar flare occurring on 2003 May 29 by using RHESSI hard X-ray (HXR) and Nobeyama microwave observations. This flare shows several typical behaviors of the HXR and microwave emissions: time delay of microwave peaks relative to HXR peaks, loop-top microwave and footpoint HXR sources, and a harder electron energy distribution inferred from the microwave spectrum than from the HXR spectrum. In addition, we found that the time profile of the spectral index of the higher-energy (\gsim 100 keV) HXRs is similar to that of the microwaves, and is delayed from that of the lower-energy (\lsim 100 keV) HXRs. We interpret these observations in terms of an electron transport model called {\TPP}. We numerically solved the spatially-homogeneous {\FP} equation to determine electron evolution in energy and pitch-angle space. By comparing the behaviors of the HXR and microwave emissions predicted by the model with the observations, we discuss the pitch-angle distribution of the electrons injected into the flare site. We found that the observed spectral variations can qualitatively be explained if the injected electrons have a pitch-angle distribution concentrated perpendicular to the magnetic field lines rather than isotropic distribution.Comment: 32 pages, 12 figures, accepted for publication in The Astronomical Journa

    On the Nature of MeV-blazars

    Full text link
    Broad-band spectra of the FSRQ (flat-spectrum-radio quasars) detected in the high energy gamma-ray band imply that there may be two types of such objects: those with steep gamma-ray spectra, hereafter called MeV-blazars, and those with flat gamma-ray spectra, GeV-blazars. We demonstrate that this difference can be explained in the context of the ERC (external-radiation-Compton) model using the same electron injection function. A satisfactory unification is reachable, provided that: (a) spectra of GeV-blazars are produced by internal shocks formed at the distances where cooling of relativistic electrons in a jet is dominated by Comptonization of broad emission lines, whereas spectra of MeV-blazars are produced at the distances where cooling of relativistic electrons is dominated by Comptonization of near-IR radiation from hot dust; (b) electrons are accelerated via a two step process and their injection function takes the form of a double power-law, with the break corresponding to the threshold energy for the diffusive shock acceleration. Direct predictions of our model are that, on average, variability time scales of the MeV-blazars should be longer than variability time scales of the GeV-blazars, and that both types of the blazar phenomenon can appear in the same object.Comment: Accepted for publication in the Astrophysical Journa

    Nonthermal Emission from a Supernova Remnant in a Molecular Cloud

    Get PDF
    In evolved supernova remnants (SNRs) interacting with molecular clouds, such as IC 443, W44, and 3C391, a highly inhomogeneous structure consisting of a forward shock of moderate Mach number, a cooling layer, a dense radiative shell and an interior region filled with hot tenuous plasma is expected. We present a kinetic model of nonthermal electron injection, acceleration and propagation in that environment and find that these SNRs are efficient electron accelerators and sources of hard X- and gamma-ray emission. The energy spectrum of the nonthermal electrons is shaped by the joint action of first and second order Fermi acceleration in a turbulent plasma with substantial Coulomb losses. Bremsstrahlung, synchrotron, and inverse Compton radiation of the nonthermal electrons produce multiwavelength photon spectra in quantitative agreement with the radio and the hard emission observed by ASCA and EGRET from IC 443. We distinguish interclump shock wave emission from molecular clump shock wave emission accounting for a complex structure of molecular cloud. Spatially resolved X- and gamma- ray spectra from the supernova remnants IC 443, W44, and 3C391 as might be observed with BeppoSAX, Chandra XRO, XMM, INTEGRAL and GLAST would distinguish the contribution of the energetic lepton component to the gamma-rays observed by EGRET.Comment: 14 pages, 4 figure, Astrophysical Journal, v.538, 2000 (in press

    On Collisionless Electron-Ion Temperature Equilibration in the Fast Solar Wind

    Full text link
    We explore a mechanism, entirely new to the fast solar wind, of electron heating by lower hybrid waves to explain the shift to higher charge states observed in various elements in the fast wind at 1 A.U. relative to the original coronal hole plasma. This process is a variation on that previously discussed for two temperature accretion flows by Begelman & Chiueh. Lower hybrid waves are generated by gyrating minor ions (mainly alpha-particles) and become significant once strong ion cyclotron heating sets in beyond 1.5 R_sun. In this way the model avoids conflict with SUMER electron temperature diagnostic measurements between 1 and 1.5 R_sun. The principal requirement for such a process to work is the existence of density gradients in the fast solar wind, with scale length of similar order to the proton inertial length. Similar size structures have previously been inferred by other authors from radio scintillation observations and considerations of ion cyclotron wave generation by global resonant MHD waves.Comment: 32 pages including 11 figures, 4 tables, accepted by Ap

    Solar Flares as Cascades of Reconnecting Magnetic Loops

    Full text link
    A model for the solar coronal magnetic field is proposed where multiple directed loops evolve in space and time. Loops injected at small scales are anchored by footpoints of opposite polarity moving randomly on a surface. Nearby footpoints of the same polarity aggregate, and loops can reconnect when they collide. This may trigger a cascade of further reconnection, representing a solar flare. Numerical simulations show that a power law distribution of flare energies emerges, associated with a scale free network of loops, indicating self-organized criticality.Comment: 4 pages, 4 figures, To be published in Phys. Rev. Let

    Shock Acceleration of Cosmic Rays - a critical review

    Get PDF
    Motivated by recent unsuccessful efforts to detect the predicted flux of TeV gamma-rays from supernova remnants, we present a critical examination of the theory on which these predictions are based. Three crucial problems are identified: injection, maximum achievable particle energy and spectral index. In each case significant new advances in understanding have been achieved, which cast doubt on prevailing paradigms such as Bohm diffusion and single-fluid MHD. This indicates that more realistic analytical models, backed by more sophisticated numerical techniques should be employed to obtain reliable predictions. Preliminary work on incorporating the effects of anomalous transport suggest that the resulting spectrum should be significantly softer than that predicted by conventional theory.Comment: 8 pages, invited review presented at the 17th ECRS, Lodz, July 2000; to appear in Journal of Physics G: Nuclear and Particle Physic
    corecore