17 research outputs found

    LFE as a development tool for next generation earthquake professionals

    Get PDF
    In January 2017 the Earthquake Engineering Research Institute in partnership with the National Research Center for Integrated Disaster Risk Management (CIGIDEN) led a five-day travel study program in Chile in which students and young professionals engaged in learning from earthquakes activities. The 16 participants attended lectures and field trips and completed two resilience projects to contribute to the body of knowledge about recovery since the 2010 Maule earthquake while also becoming familiar with reconnaissance tools and techniques. The program was created to provide learning-from-earthquakes opportunities for younger members outside the limited postevent reconnaissance teams; and to engage younger members in EERI activities and train them for future reconnaissance, which might include long-term resilience and recovery components. The success of the program can be attributed to the strong partnership with CIGIDEN, experienced mentors who accompanied the group, senior academics and practitioners who lectured and led tours, as well as a strong interdisciplinary team of participants who worked extremely hard interviewing locals and compiling the data for their resilience project

    Cost-Effectiveness of New Cardiac and Vascular Rehabilitation Strategies for Patients with Coronary Artery Disease

    Get PDF
    Objective: Peripheral arterial disease (PAD) often hinders the cardiac rehabilitation program. The aim of this study was evaluating the relative cost-effectiveness of new rehabilitation strategies which include the diagnosis and treatment of PAD in patients with coronary artery disease (CAD) undergoing cardiac rehabilitation. Data Sources: Best-available evidence was retrieved from literature and combined with primary data from 231 patients. Methods: We developed a Markov decision model to compare the following treatment strategies: 1. cardiac rehabilitation only; 2. ankle-brachial index (ABI) if cardiac rehabilitation fails followed by diagnostic work-up and revascularization for PAD if needed; 3. ABI prior to cardiac rehabilitation followed by diagnostic work-up and revascularization for PAD if needed. Quality-adjusted-life years (QALYs), life-time costs (US ),incrementalcost−effectivenessratios(ICER),andgaininnethealthbenefits(NHB)inQALYequivalentswerecalculated.Athresholdwillingness−to−payof), incremental cost-effectiveness ratios (ICER), and gain in net health benefits (NHB) in QALY equivalents were calculated. A threshold willingness-to-pay of 75 000 was used. Results: ABI if cardiac rehabilitation fails was the most favorable strategy with an ICER of 44251perQALYgainedandanincrementalNHBcomparedtocardiacrehabilitationonlyof0.03QALYs(9544 251 per QALY gained and an incremental NHB compared to cardiac rehabilitation only of 0.03 QALYs (95% CI: −0.17, 0.29) at a threshold willingness-to-pay of 75 000/QALY. After sensitivity analysis, a combined cardiac and vascular rehabilitation program increased the success rate and would dominate the other two strategies with total lifetime costs of $30 246 a quality-adjusted life expectancy of 3.84 years, and an incremental NHB of 0.06 QALYs (95%CI:−0.24, 0.46) compared to current practice. The results were robust for other different input parameters. Conclusion: ABI measurement if cardiac rehabilitation fails followed by a diagnostic work-up and revascularization for PAD if needed are potentially cost-effective compared to cardiac rehabilitation only
    corecore