85 research outputs found
JULES-GL7: The Global Land configuration of the Joint UK Land Environment Simulator version 7.0 and 7.2
This is the final version. Available on open access from the European Geosciences Union via the DOI in this recordData availability.
The model configuration and associated forcing data are available via the indicated methods in the manuscript (see Appendix A). JULES and associated configurations are freely available for non-commercial research use as set out in the JULES user terms and conditions (http://jules-lsm.github.io/access_req/JULES_Licence.pdf, last access: 31 January 2020).Code availability.
This work is based on JULES version 5.3 with specific configurations included in the form of suites. For full information regarding accessing the code and configurations, please refer to Appendix A.We present the latest global land configuration of the Joint UK Land Environment Simulator (JULES) model as used in the latest international Coupled Model Intercomparison Project (CMIP6). The configuration is defined by the combination of switches, parameter values and ancillary data, which we provide alongside a set of historical forcing data that defines the experimental setup. The configurations provided are JULES-GL7.0, the base setup used in CMIP6 and JULES-GL7.2, a subversion that includes improvements to the representation of canopy radiation and interception. These configurations are recommended for all JULES applications focused on the exchange and state of heat, water and momentum at the land surface. In addition, we provide a standardised modelling system that runs on the Natural Environment Research Council (NERC) JASMIN cluster, accessible to all JULES users. This is provided so that users can test and evaluate their own science against the standard configuration to promote community engagement in the development of land surface modelling capability through JULES. It is intended that JULES configurations should be independent of the underlying code base, and thus they will be available in the latest release of the JULES code. This means that different code releases will produce scientifically comparable results for a given configuration version. Versioning is therefore determined by the configuration as opposed to the underlying code base.BEIS and DEFRA Met Office Hadley Centre Climate ProgrammeEuropean Union Horizon 202
Lack of association between genetic polymorphisms within DUSP12 - ATF6 locus and glucose metabolism related traits in a Chinese population
<p>Abstract</p> <p>Background</p> <p>Genome-wide linkage studies in multiple ethnic populations found chromosome 1q21-q25 was the strongest and most replicable linkage signal in the human chromosome. Studies in Pima Indian, Caucasians and African Americans identified several SNPs in <it>DUSP12 </it>and <it>ATF6</it>, located in chromosome 1q21-q23, were associated with type 2 diabetes.</p> <p>Methods</p> <p>We selected 19 single nucleotide polymorphisms (SNPs) that could tag 98% of the SNPs with minor allele frequencies over 0.1 within <it>DUSP12-ATF6 </it>region. These SNPs were genotyped in a total of 3,700 Chinese Han subjects comprising 1,892 type 2 diabetes patients and 1,808 controls with normal glucose regulation.</p> <p>Results</p> <p>None of the SNPs and haplotypes showed significant association to type 2 diabetes in our samples. No association between the SNPs and quantitative traits was observed either.</p> <p>Conclusions</p> <p>Our data suggests common SNPs within <it>DUSP12</it>-<it>ATF6 </it>locus may not play a major role in glucose metabolism in the Chinese.</p
Identification of the Plasmodium berghei resistance locus 9 linked to survival on chromosome 9
Background: One of the main causes of mortality from severe malaria in Plasmodium falciparum infections is cerebral malaria (CM). An important host genetic component determines the susceptibility of an individual to develop CM or to clear the infection and become semi-immune. As such, the identification of genetic loci associated with susceptibility or resistance may serve to modulate disease severity. Methodology The Plasmodium berghei mouse model for experimental cerebral malaria (ECM) reproduces several disease symptoms seen in human CM, and two different phenotypes, a susceptible (FVB/NJ) and a resistant mouse strain (DBA/2J), were examined. Results: FVB/NJ mice died from infection within ten days, whereas DBA/2J mice showed a gender bias: males survived on average nineteen days and females either died early with signs of ECM or survived for up to three weeks. A comparison of brain pathology between FVB/NJ and DBA/2J showed no major differences with regard to brain haemorrhages or the number of parasites and CD3+ cells in the microvasculature. However, significant differences were found in the peripheral blood of infected mice: For example resistant DBA/2J mice had significantly higher numbers of circulating basophils than did FVB/NJ mice on day seven. Analysis of the F2 offspring from a cross of DBA/2J and FVB/NJ mice mapped the genetic locus of the underlying survival trait to chromosome 9 with a Lod score of 4.9. This locus overlaps with two previously identified resistance loci (char1 and pymr) from a blood stage malaria model. Conclusions: Survival best distinguishes malaria infections between FVB/NJ and DBA/2J mice. The importance of char1 and pymr on chromosome 9 in malaria resistance to P. berghei was confirmed. In addition there was an association of basophil numbers with survival
A Genome-Wide Association Study Identifies Susceptibility Variants for Type 2 Diabetes in Han Chinese
To investigate the underlying mechanisms of T2D pathogenesis, we looked for diabetes susceptibility genes that increase the risk of type 2 diabetes (T2D) in a Han Chinese population. A two-stage genome-wide association (GWA) study was conducted, in which 995 patients and 894 controls were genotyped using the Illumina HumanHap550-Duo BeadChip for the first genome scan stage. This was further replicated in 1,803 patients and 1,473 controls in stage 2. We found two loci not previously associated with diabetes susceptibility in and around the genes protein tyrosine phosphatase receptor type D (PTPRD) (P = 8.54×10−10; odds ratio [OR] = 1.57; 95% confidence interval [CI] = 1.36–1.82), and serine racemase (SRR) (P = 3.06×10−9; OR = 1.28; 95% CI = 1.18–1.39). We also confirmed that variants in KCNQ1 were associated with T2D risk, with the strongest signal at rs2237895 (P = 9.65×10−10; OR = 1.29, 95% CI = 1.19–1.40). By identifying two novel genetic susceptibility loci in a Han Chinese population and confirming the involvement of KCNQ1, which was previously reported to be associated with T2D in Japanese and European descent populations, our results may lead to a better understanding of differences in the molecular pathogenesis of T2D among various populations
Dynamics of chemosensitivity and chromosomal instability in recurrent glioblastoma
Glioblastoma multiforme is characterised by invasive growth and frequent recurrence. Here, we have analysed chromosomal changes in comparison to tumour cell aggressiveness and chemosensitivity of three cell lines established from a primary tumour and consecutive recurrences (BTL1 to BTL3) of a long-term surviving glioblastoma patient together with paraffin-embedded materials of five further cases with recurrent disease. Following surgery, the BTL patient progressed under irradiation/ lomustine but responded to temozolomide after re-operation to temozolomide. The primary tumour -derived BTL1 cells showed chromosomal imbalances typical of highly aggressive glioblastomas. Interestingly, BTL2 cells established from the first recurrence developed under therapy showed signs of enhanced chromosomal instability. In contrast, BTL3 cells from the second recurrence resembled a less aggressive subclone of the primary tumour. Although BTL2 cells exhibited a highly aggressive phenotype, BTL3 cells were characterised by reduced proliferative and migratory potential. Despite persistent methylation of the O6-methylguanine-DNA methyltransferase promoter, BTL3 cells exhibited the highest temozolomide sensitivity. A comparable situation was found in two out of five glioblastoma patients, both characterised by enhanced survival time, who also relapsed after surgery/chemotherapy with less aggressive recurrences. Taken together, our data suggest that pretreated glioblastoma patients may relapse with highly chemosensitive tumours confirming the feasibility of temozolomide treatment even in case of repeated recurrence
Computational Prediction and Experimental Verification of New MAP Kinase Docking Sites and Substrates Including Gli Transcription Factors
In order to fully understand protein kinase networks, new methods are needed to identify regulators and substrates of kinases, especially for weakly expressed proteins. Here we have developed a hybrid computational search algorithm that combines machine learning and expert knowledge to identify kinase docking sites, and used this algorithm to search the human genome for novel MAP kinase substrates and regulators focused on the JNK family of MAP kinases. Predictions were tested by peptide array followed by rigorous biochemical verification with in vitro binding and kinase assays on wild-type and mutant proteins. Using this procedure, we found new ‘D-site’ class docking sites in previously known JNK substrates (hnRNP-K, PPM1J/PP2Czeta), as well as new JNK-interacting proteins (MLL4, NEIL1). Finally, we identified new D-site-dependent MAPK substrates, including the hedgehog-regulated transcription factors Gli1 and Gli3, suggesting that a direct connection between MAP kinase and hedgehog signaling may occur at the level of these key regulators. These results demonstrate that a genome-wide search for MAP kinase docking sites can be used to find new docking sites and substrates
Global Diversity of Ascidiacea
The class Ascidiacea presents fundamental opportunities for research in the fields of development, evolution, ecology, natural products and more. This review provides a comprehensive overview of the current knowledge regarding the global biodiversity of the class Ascidiacea, focusing in their taxonomy, main regions of biodiversity, and distribution patterns. Based on analysis of the literature and the species registered in the online World Register of Marine Species, we assembled a list of 2815 described species. The highest number of species and families is found in the order Aplousobranchia. Didemnidae and Styelidae families have the highest number of species with more than 500 within each group. Sixty percent of described species are colonial. Species richness is highest in tropical regions, where colonial species predominate. In higher latitudes solitary species gradually contribute more to the total species richness. We emphasize the strong association between species richness and sampling efforts, and discuss the risks of invasive species. Our inventory is certainly incomplete as the ascidian fauna in many areas around the world is relatively poorly known, and many new species continue to be discovered and described each year
- …