46 research outputs found

    Accurate automated quantitative imaging of tortoise erythrocytes using the NIS image analysis system

    Get PDF
    The standard method for assessing blood cell characteristics using an ocular micrometer is time-consuming and limited. We used the Nikon NIS Elements imaging software and May-Grünwald-Giemsa staining to determine whether automated image analysis is suitable for rapid and accurate quantitative morphometry of erythrocytes. Blood was collected during four seasons from 126 geometric tortoises and the blood smears were evaluated for cell (C) and nuclear (N) characteristics of the erythrocytes. We measured area, length (L), width (W), perimeter, elongation and pixelation intensity, and calculated L/W and N/C areas. Erythrocyte size differed among cohorts; females, the larger sex, had smaller erythrocytes than either males or juveniles. Males had more elongated erythrocytes than females and erythrocytes of adults were more elongated than those of juveniles. Erythrocyte size and shape influence the efficiency of gas exchange owing to surface area to volume ratios, which are greater for small, elongated cells than for large, round cells. The high N/C ratio and low pixelation intensities of males and juveniles indicate that they may have had more immature erythrocytes in their circulation than females. The use of pixelation intensity to indicate the presence of immature erythrocytes was validated by seasonal differences that corresponded to the biology of the tortoises. Pixelation intensity was lowest in winter. We found that automated image analysis is a rapid and reliable method for determining cell size and shape, and it offers the potential for distinguishing among developmental stages that differ in staining intensity. The method should be useful for rapid health assessments, particularly of threatened species, and for comparative studies among different vertebrates.Web of Scienc

    Effectiveness of a stepped primary care smoking cessation intervention (ISTAPS study): design of a cluster randomised trial

    Get PDF
    Background: There is a considerable body of evidence on the effectiveness of specific interventions in individuals who wish to quit smoking. However, there are no large-scale studies testing the whole range of interventions currently recommended for helping people to give up smoking; specifically those interventions that include motivational interviews for individuals who are not interested in quitting smoking in the immediate to short term. Furthermore, many of the published studies were undertaken in specialized units or by a small group of motivated primary care centres. The objective of the study is to evaluate the effectiveness of a stepped smoking cessation intervention based on a trans-theoretical model of change, applied to an extensive group of Primary Care Centres (PCC). ethods/Design: Cluster randomised clinical trial. Unit of randomization: basic unit of care consisting of a family physician and a nurse, both of whom care for the same population (aprox. 2000 people). Intention to treat analysis. Study population: Smokers (n = 3024) aged 14 to 75 years consulting for any reason to PCC and who provided written informed consent to participate in the trial. Intervention: 6-month implementation of recommendations of a Clinical Practice Guideline which includes brief motivational interviews for smokers at the precontemplation - contemplation stage, brief intervention for smokers in preparation-action who do not want help, intensive intervention with pharmacotherapy for smokers in preparation-action who want help, and reinforcing intervention in the maintenance stage. Control group: usual care. Outcome measures: Self-reported abstinence confirmed by exhaled air carbon monoxide concentration of ≤ 10 parts per million. Points of assessment: end of intervention period and 1 and 2 years post-intervention; continuous abstinence rate for 1 year; change in smoking cessation stage; health status measured by SF-36. Discussion: The application of a stepped intervention based on the stages of a change model is possible under real and diverse clinical practice conditions, and improves the smoking cessation success rate in smokers, besides of their intention or not to give up smoking at baseline

    The Jumonji-C oxygenase JMJD7 catalyzes (3S)-lysyl hydroxylation of TRAFAC GTPases

    Get PDF
    Biochemical, structural and cellular studies reveal Jumonji-C (JmjC) domain-containing 7 (JMJD7) to be a 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes (3S)-lysyl hydroxylation. Crystallographic analyses reveal JMJD7 to be more closely related to the JmjC hydroxylases than to the JmjC demethylases. Biophysical and mutation studies show that JMJD7 has a unique dimerization mode, with interactions between monomers involving both N- and C-terminal regions and disulfide bond formation. A proteomic approach identifies two related members of the translation factor (TRAFAC) family of GTPases, developmentally regulated GTP-binding proteins 1 and 2 (DRG1/2), as activity-dependent JMJD7 interactors. Mass spectrometric analyses demonstrate that JMJD7 catalyzes Fe(ii)- and 2OG-dependent hydroxylation of a highly conserved lysine residue in DRG1/2; amino-acid analyses reveal that JMJD7 catalyzes (3S)-lysyl hydroxylation. The functional assignment of JMJD7 will enable future studies to define the role of DRG hydroxylation in cell growth and disease.Fil: Markolovic, Suzana. University of Oxford; Reino UnidoFil: Zhuang, Qinqin. University Of Birmingham; Reino UnidoFil: Wilkins, Sarah E.. University of Oxford; Reino UnidoFil: Eaton, Charlotte D.. University Of Birmingham; Reino UnidoFil: Abboud, Martine I.. University of Oxford; Reino UnidoFil: Katz, Maximiliano Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: McNeil, Helen E.. University Of Birmingham; Reino UnidoFil: Leśniak, Robert K.. University of Oxford; Reino UnidoFil: Hall, Charlotte. University Of Birmingham; Reino UnidoFil: Struwe, Weston B.. University of Oxford; Reino UnidoFil: Konietzny, Rebecca. University of Oxford; Reino UnidoFil: Davis, Simon. University of Oxford; Reino UnidoFil: Yang, Ming. The Francis Crick Institute; Reino Unido. University of Oxford; Reino UnidoFil: Ge, Wei. University of Oxford; Reino UnidoFil: Benesch, Justin L. P.. University of Oxford; Reino UnidoFil: Kessler, Benedikt M.. University of Oxford; Reino UnidoFil: Ratcliffe, Peter J.. University of Oxford; Reino Unido. The Francis Crick Institute; Reino UnidoFil: Cockman, Matthew E.. The Francis Crick Institute; Reino Unido. University of Oxford; Reino UnidoFil: Fischer, Roman. University of Oxford; Reino UnidoFil: Wappner, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Chowdhury, Rasheduzzaman. University of Stanford; Estados Unidos. University of Oxford; Reino UnidoFil: Coleman, Mathew L.. University Of Birmingham; Reino UnidoFil: Schofield, Christopher J.. University of Oxford; Reino Unid

    Epigenetic assays for chemical biology and drug discovery

    Full text link
    corecore