34 research outputs found

    Magnetic Field Mapping with a Squid Device

    Get PDF
    An ability to experimentally determine the magnetic field in the region close to the face of an eddy current coil, the normal location of the work piece, is very desirable. It allows confirmation of the theoretical design of complex coils, offers a potential method for rapid characterization of commercial coils, and may well provide a uniquely direct method of looking at coil/flaw interactions. However, the small size of typical eddy current probes presents some extreme problems in this regard. For the past year we have been attempting to determine the best method to use for measuring the field configuration in the near-field regio

    Active sampling and decision making in Drosophila chemotaxis

    Get PDF
    The ability to respond to chemical stimuli is fundamental to the survival of motile organisms, but the strategies underlying odour tracking remain poorly understood. Here we show that chemotaxis in Drosophila melanogaster larvae is an active sampling process analogous to sniffing in vertebrates. Combining computer-vision algorithms with reconstructed olfactory environments, we establish that larvae orient in odour gradients through a sequential organization of stereotypical behaviours, including runs, stops, lateral head casts and directed turns. Negative gradients, integrated during runs, control the timing of turns. Positive gradients detected through high-amplitude head casts determine the direction of individual turns. By genetically manipulating the peripheral olfactory circuit, we examine how orientation adapts to losses and gains of function in olfactory input. Our findings suggest that larval chemotaxis represents an intermediate navigation strategy between the biased random walks of Escherichia Coli and the stereo-olfaction observed in rats and humans

    iTRAQ Analysis of Complex Proteome Alterations in 3xTgAD Alzheimer's Mice: Understanding the Interface between Physiology and Disease

    Get PDF
    Alzheimer's disease (AD) is characterized by progressive cognitive impairment associated with accumulation of amyloid β-peptide, synaptic degeneration and the death of neurons in the hippocampus, and temporal, parietal and frontal lobes of the cerebral cortex. Analysis of postmortem brain tissue from AD patients can provide information on molecular alterations present at the end of the disease process, but cannot discriminate between changes that are specifically involved in AD versus those that are simply a consequence of neuronal degeneration. Animal models of AD provide the opportunity to elucidate the molecular changes that occur in brain cells as the disease process is initiated and progresses. To this end, we used the 3xTgAD mouse model of AD to gain insight into the complex alterations in proteins that occur in the hippocampus and cortex in AD. The 3xTgAD mice express mutant presenilin-1, amyloid precursor protein and tau, and exhibit AD-like amyloid and tau pathology in the hippocampus and cortex, and associated cognitive impairment. Using the iTRAQ stable-isotope-based quantitative proteomic technique, we performed an in-depth proteomic analysis of hippocampal and cortical tissue from 16 month old 3xTgAD and non-transgenic control mice. We found that the most important groups of significantly altered proteins included those involved in synaptic plasticity, neurite outgrowth and microtubule dynamics. Our findings have elucidated some of the complex proteome changes that occur in a mouse model of AD, which could potentially illuminate novel therapeutic avenues for the treatment of AD and other neurodegenerative disorders

    Marine Tar Residues: a Review

    Get PDF
    Abstract Marine tar residues originate from natural and anthropogenic oil releases into the ocean environment and are formed after liquid petroleum is transformed by weathering, sedimentation, and other processes. Tar balls, tar mats, and tar patties are common examples of marine tar residues and can range in size from millimeters in diameter (tar balls) to several meters in length and width (tar mats). These residues can remain in the ocean envi-ronment indefinitely, decomposing or becoming buried in the sea floor. However, in many cases, they are transported ashore via currents and waves where they pose a concern to coastal recreation activities, the seafood industry and may have negative effects on wildlife. This review summarizes the current state of knowledge on marine tar residue formation, transport, degradation, and distribution. Methods of detection and removal of marine tar residues and their possible ecological effects are discussed, in addition to topics of marine tar research that warrant further investigation. Emphasis is placed on ben-thic tar residues, with a focus on the remnants of the Deepwater Horizon oil spill in particular, which are still affecting the northern Gulf of Mexico shores years after the leaking submarine well was capped

    A network approach to discerning the identities of C. elegans in a free moving population

    No full text
    The study of C. elegans has led to ground-breaking discoveries in gene-function, neuronal circuits, and physiological responses. Subtle behavioral phenotypes, however, are often difficult to measure reproducibly. We have developed an experimental and computational infrastructure to simultaneously record and analyze the physical characteristics, movement, and social behaviors of dozens of interacting free-moving nematodes. Our algorithm implements a directed acyclic network that reconstructs the complex behavioral trajectories generated by individual C. elegans in a free moving population by chaining hundreds to thousands of short tracks into long contiguous trails. This technique allows for the high-throughput quantification of behavioral characteristics that require long-term observation of individual animals. The graphical interface we developed will enable researchers to uncover, in a reproducible manner, subtle time-dependent behavioral phenotypes that will allow dissection of the molecular mechanisms that give rise to organism-level behavior.Mechanisms of Aging and Dementia Training grant (NIH grant: T32 AG20506) and the Ruth L. Kirschstein National Research Service Award (NIH Grant: 1F31AG045017) to P.B.W., from the National Institutes of Health (NIGMS, NIA, NIMH), the Ellison Medical Foundation, and the Daniel F. and Ada L. Rice Foundation to R.I.M., and from the grants for Department of Defense’s Army Research Office (No. W911NF-14-1-0259) and the John Templeton Foundation (No. FP053369-A//39147) to L.A.N.A. A.T.-C. was supported by the Fundação para a Ciência e Tecnologia (FCT) individual fellowship SFRH/BPD/79469/2011. The authors thank the members of the L.A.N.A and R.I.M. Laboratories for their support and critical reading of the manuscript. Thanks to K. Day for scoring validation recordings and D.J. Bridge for insightful discussion. Some strains were provided by the CGC, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440
    corecore