30 research outputs found

    Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa

    Get PDF
    Pseudomonas aeruginosa is an antibiotic-refractory pathogen with a large genome and extensive genotypic diversity. Historically, P. aeruginosa has been a major model system for understanding the molecular mechanisms underlying type I clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR-Cas)-based bacterial immune system function. However, little information on the phylogenetic distribution and potential role of these CRISPR-Cas systems in molding the P. aeruginosa accessory genome and antibiotic resistance elements is known. Computational approaches were used to identify and characterize CRISPR-Cas systems within 672 genomes, and in the process, we identified a previously unreported and putatively mobile type I-C P. aeruginosa CRISPR-Cas system. Furthermore, genomes harboring noninhibited type I-F and I-E CRISPR-Cas systems were on average ~300 kb smaller than those without a CRISPR-Cas system. In silico analysis demonstrated that the accessory genome (n = 22,036 genes) harbored the majority of identified CRISPR-Cas targets. We also assembled a global spacer library that aided the identification of difficult-to-characterize mobile genetic elements within next-generation sequencing (NGS) data and allowed CRISPR typing of a majority of P. aeruginosa strains. In summary, our analysis demonstrated that CRISPR-Cas systems play an important role in shaping the accessory genomes of globally distributed P. aeruginosa isolates

    Subclonal mutation selection in mouse lymphomagenesis identifies known cancer loci and suggests novel candidates

    Get PDF
    Determining whether recurrent but rare cancer mutations are bona fide driver mutations remains a bottleneck in cancer research. Here we present the most comprehensive analysis of retrovirus driven lymphomagenesis produced to date, sequencing 700,000 mutations from >500 malignancies collected at time points throughout tumor development. This scale of data allows novel, novel statistical approaches for identifying driver mutations and yields a high-resolution, genome wide map of the selective forces surrounding cancer gene loci. We also demonstrate negative selection of mutations that may be deleterious to tumor development indicating novel avenues for therapy. Screening two BCL2 transgenic models confirms known drivers of human B-cell non- Hodgkin lymphoma, and implicates novel candidates including modifiers of immunosurveillance and MHC loci. Correlating mutations with genotypic and phenotypic features also gives robust identification of known cancer genes independently of local variance in mutation density. An online resource http://mulv.lms.mrc.ac.uk allows customized queries of the entire dataset

    Genome-wide association and prediction of direct genomic breeding values for composition of fatty acids in Angus beef cattlea

    Get PDF
    BACKGROUND: As consumers continue to request food products that have health advantages, it will be important for the livestock industry to supply a product that meet these demands. One such nutrient is fatty acids, which have been implicated as playing a role in cardiovascular disease. Therefore, the objective of this study was to determine the extent to which molecular markers could account for variation in fatty acid composition of skeletal muscle and identify genomic regions that harbor genetic variation. RESULTS: Subsets of markers on the Illumina 54K bovine SNPchip were able to account for up to 57% of the variance observed in fatty acid composition. In addition, these markers could be used to calculate a direct genomic breeding values (DGV) for a given fatty acids with an accuracy (measured as simple correlations between DGV and phenotype) ranging from -0.06 to 0.57. Furthermore, 57 1-Mb regions were identified that were associated with at least one fatty acid with a posterior probability of inclusion greater than 0.90. 1-Mb regions on BTA19, BTA26 and BTA29, which harbored fatty acid synthase, Sterol-CoA desaturase and thyroid hormone responsive candidate genes, respectively, explained a high percentage of genetic variance in more than one fatty acid. It was also observed that the correlation between DGV for different fatty acids at a given 1-Mb window ranged from almost 1 to -1. CONCLUSIONS: Further investigations are needed to identify the causal variants harbored within the identified 1-Mb windows. For the first time, Angus breeders have a tool whereby they could select for altered fatty acid composition. Furthermore, these reported results could improve our understanding of the biology of fatty acid metabolism and deposition
    corecore