12 research outputs found

    Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes.

    Get PDF
    Cations are known to mediate diverse interactions in nucleic acids duplexes but they are critical in the arrangement of four-stranded structures. Here, we use all-atom molecular dynamics simulations with explicit solvent to analyse the mechanical unfolding of representative intramolecular G-quadruplex structures: a parallel, a hybrid and an antiparallel DNA and a parallel RNA, in the presence of stabilising cations. We confirm the stability of these conformations in the presence of [Formula: see text] central ions and observe distortions from the tetrad topology in their absence. Force-induced unfolding dynamics is then investigated. We show that the unfolding events in the force-extension curves are concomitant to the loss of coordination between the central ions and the guanines of the G-quadruplex. We found lower ruptures forces for the parallel configuration with respect to the antiparallel one, while the behaviour of the force pattern of the parallel RNA appears similar to the parallel DNA. We anticipate that our results will be essential to interpret the fine structure rupture profiles in stretching assays at high resolution and will shed light on the mechanochemical activity of G-quadruplex-binding machinery

    A recombinant E. coli vaccine to promote MHC class I-dependent antigen presentation: application to cancer immunotherapy

    No full text
    We have examined the potential of recombinant Escherichia coli expressing listeriolysin 0 (LLO) to deliver tumour antigens to dendritic cells (DCs) for cancer immunotherapy. Using OVA as a model tumour antigen, we have shown in murine DCs that E. coli expressing cytoplasmic LLO and OVA proteins can deliver the OVA K-b-restricted epitope SIINFEKL for MHC class I presentation. In contrast, when E coli expressing OVA alone were used, MHC class II presentation of the OVA 323-339 I-A(b)-restricted peptide was predominant When injected in vivo, DCs pulsed with E coli expressing LLO and OVA induced production of cytotoxic T-lymphocytes capable of lysing an OVA-expressing melanoma cell line (B16-OVA) and resulted in suppression of tumour growth following challenge with B16-OVA. Immunisation of mice by direct injection of E coli LLO/OVA provided a more potent anti-tumour response, resulting in complete protection in 75% of mice. Injection of live bacteria was not necessary as immunisation with paraformaldehyde-fixed E coli LLO/OVA provided an even stronger anti-tumour response against B16-OVA. Altogether, our data highlight the potential of this system as a novel and efficient strategy for tumour immunotherapy

    Class I HLA-restricted cytotoxic T lymphocyte responses against malaria-elucidation on the basis of HLA peptide binding motifs

    No full text
    In animal models, CD8+ T cells are a critical effector mechanism in the protective immunity against malaria. Conventional approaches to the development of many vaccines, including those against malaria, have however proved inadequate. In particular, an alternative approach is needed for the development of vaccines designed to induce a cellular immune response mediated by CD8+ T cells. Advances in the field of molecular immunology during the past decade have provided an insight into the presentation of peptides by MHC class I molecules and their recognition by CD8+ T cells. These studies have provided a conceptual basis for the development of efficacious parasitic and viral vaccines. By a combination of immunochemical and cellular immunologic analyses based on specific peptide binding motifs, a subunit malaria vaccine that includes CD8+ T cell epitopes restricted by the most common class I HLA alleles, including HLA-A2, can now be constructed

    Common Acquired and Atypical (Dysplastic) Melanocytic Nevi

    No full text

    Role of Matrix Metalloproteinases in the Pathogenesis of Traumatic Brain Injury

    No full text
    corecore