2,057 research outputs found

    Higher derivative type II string effective actions, automorphic forms and E11

    Full text link
    By dimensionally reducing the ten-dimensional higher derivative type IIA string theory effective action we place constraints on the automorphic forms that appear in the effective action in lower dimensions. We propose a number of properties of such automorphic forms and consider the prospects that E11 can play a role in the formulation of the higher derivative string theory effective action.Comment: 34 page

    Constraints on Automorphic Forms of Higher Derivative Terms from Compactification

    Full text link
    By dimensionally reducing the higher derivative corrections of ten-dimensional IIB theory on a torus we deduce constraints on the E_{n+1} automorphic forms that occur in d=10-n dimensions. In particular we argue that these automorphic forms involve the representation of E_{n+1} with fundamental weight \lambda^{n+1}, which is also the representation to which the string charges in d dimensions belong. We also consider a similar calculation for the reduction of higher derivative terms in eleven-dimensional M-theory.Comment: Minor corrections, to appear in JHE

    Holographic non-perturbative corrections to gauge couplings

    Get PDF
    We give a direct microscopic derivation of the F-theory background that corresponds to four D7 branes of type I' theory by taking into account the D-instanton contributions to the emission of the axio-dilaton field in the directions transverse to the D7's. The couplings of the axio-dilaton to the D-instanton moduli modify its classical source terms which are shown to be proportional to the elements of the D7 brane chiral ring. Solving the bulk field equations with the non-perturbatively corrected sources yields the full F-theory background. This solution represents the gravitational dual of the four-dimensional theory living on a probe D3 brane of type I', namely of the N=2, Sp(1) SYM theory with Nf=4. Our results provide an explicit microscopic derivation of the non-perturbative gravitational dual of this theory. They also explain the recent observation that the exact coupling for this theory can be entirely reconstructed from its perturbative part plus the knowledge of the chiral ring on the D7 branes supporting its flavor degrees of freedom.Comment: Latex, 39 pages, 6 figure

    Eisenstein series for infinite-dimensional U-duality groups

    Get PDF
    We consider Eisenstein series appearing as coefficients of curvature corrections in the low-energy expansion of type II string theory four-graviton scattering amplitudes. We define these Eisenstein series over all groups in the E_n series of string duality groups, and in particular for the infinite-dimensional Kac-Moody groups E9, E10 and E11. We show that, remarkably, the so-called constant term of Kac-Moody-Eisenstein series contains only a finite number of terms for particular choices of a parameter appearing in the definition of the series. This resonates with the idea that the constant term of the Eisenstein series encodes perturbative string corrections in BPS-protected sectors allowing only a finite number of corrections. We underpin our findings with an extensive discussion of physical degeneration limits in D<3 space-time dimensions.Comment: 69 pages. v2: Added references and small additions, to be published in JHE

    Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function

    Get PDF
    We evaluate the one loop determinant of matter multiplet fields of N=4 supergravity in the near horizon geometry of quarter BPS black holes, and use it to calculate logarithmic corrections to the entropy of these black holes using the quantum entropy function formalism. We show that even though individual fields give non-vanishing logarithmic contribution to the entropy, the net contribution from all the fields in the matter multiplet vanishes. Thus logarithmic corrections to the entropy of quarter BPS black holes, if present, must be independent of the number of matter multiplet fields in the theory. This is consistent with the microscopic results. During our analysis we also determine the complete spectrum of small fluctuations of matter multiplet fields in the near horizon geometry.Comment: LaTeX file, 52 pages; v2: minor corrections, references adde

    Multi-scalar tachyon potential on non-BPS domain walls

    Full text link
    We have considered the multi-scalar and multi-tachyon fields living on a 3d domain wall embedded in a 5d dimensional Minkowski spacetime. The effective action for such a domain wall can be found by integrating out the normal modes as vibrating modes around the domain wall solution of a truncated 5d supergravity action. The multi-scalar tachyon potential are good enough to modeling assisted inflation scenario with multi-tachyon fields. The tachyon condensation are also briefly addressed.Comment: version to appear in JHEP, 18 pages, 3 figure

    Simplifying one-loop amplitudes in superstring theory

    Get PDF
    We show that 4-point vector boson one-loop amplitudes, computed in ref.[1] in the RNS formalism, around vacuum configurations with open unoriented strings, preserving at least N=1 SUSY in D=4, satisfy the correct supersymmetry Ward identities, in that they vanish for non MHV configurations (++++) and (-+++). In the MHV case (--++) we drastically simplify their expressions. We then study factorisation and the limiting IR and UV behaviour and find some unexpected results. In particular no massless poles are exposed at generic values of the modular parameter. Relying on the supersymmetric properties of our bosonic amplitudes, we extend them to manifestly supersymmetric super-amplitudes and compare our results with those obtained in the D=4 hybrid formalism, pointing out difficulties in reconciling the two approaches for contributions from N=1,2 sectors.Comment: 38 pages plus appendice

    Populating the swampland: the case of U(1)^496 and E_8 x U(1)^248

    Full text link
    For d=10 N=1 SUGRA coupled to d=10 N=1 SYM, anomaly cancellation places severe constraints on the allowed gauge groups. Besides the ones known to appear in string theory, only U(1)^496 and E_8 x U(1)^248 are allowed. There are no known theories of quantum gravity that reduce in some limit to these two last supergravity theories, and in this note I present some evidence that those quantum theories might not exist. The first observation is that, upon compactification, requring that the quantum theory possesses a moduli space with finite volume typically implies the existence of singularities where the 4d gauge group is enhanced, but for these two theories that gauge enhancement is problematic from the 10d point of view. I also point out that while these four supergravity theories present repulson-type singularities, the known mechanism that repairs those singularities for the first two - the non-Abelian enhancon - is not available for the last two theories. In short, these two supergravity theories might be too Abelian for their own good.Comment: 12 page

    Fluxes and Warping for Gauge Couplings in F-theory

    Full text link
    We compute flux-dependent corrections in the four-dimensional F-theory effective action using the M-theory dual description. In M-theory the 7-brane fluxes are encoded by four-form flux and modify the background geometry and Kaluza-Klein reduction ansatz. In particular, the flux sources a warp factor which also depends on the torus directions of the compactification fourfold. This dependence is crucial in the derivation of the four-dimensional action, although the torus fiber is auxiliary in F-theory. In M-theory the 7-branes are described by an infinite array of Taub-NUT spaces. We use the explicit metric on this geometry to derive the locally corrected warp factor and M-theory three-from as closed expressions. We focus on contributions to the 7-brane gauge coupling function from this M-theory back-reaction and show that terms quadratic in the internal seven-brane flux are induced. The real part of the gauge coupling function is modified by the M-theory warp factor while the imaginary part is corrected due to a modified M-theory three-form potential. The obtained contributions match the known weak string coupling result, but also yield additional terms suppressed at weak coupling. This shows that the completion of the M-theory reduction opens the way to compute various corrections in a genuine F-theory setting away from the weak string coupling limit.Comment: 46 page

    Waiting for the state: gender, citizenship and everyday encounters with bureaucracy in India

    Get PDF
    This article focuses on practices and meanings of time and waiting experienced by poor, low-class Dalits and Muslims in their routine encounters with the state in India. Drawing on ethnographic research from Tamil Nadu and Uttar Pradesh, it presents experiences of waiting around queuing and applying for paperwork, cards, and welfare schemes, in order to examine the role of temporal processes in the production of citizenship and citizen agency. An analysis of various forms of waiting – ‘on the day’, ‘to and fro’, and ‘chronic’ waiting – reveals how temporal processes operate as mechanisms of power and control through which state actors and other mediators produce differentiated forms of citizenship and citizens. Temporal processes and their material outcomes, we argue, are shaped by class, caste and religion, while also drawing on – and reproducing – gendered identities and inequalities. However, rather than being ‘passive’ patients of the state, we show how ordinary people draw on money, patronage networks and various performative acts in an attempt to secure their rights as citizens of India
    • 

    corecore