4 research outputs found

    Concentration addition, independent action and generalized concentration addition models for mixture effect prediction of sex hormone synthesis in vitro

    Get PDF
    Humans are concomitantly exposed to numerous chemicals. An infinite number of combinations and doses thereof can be imagined. For toxicological risk assessment the mathematical prediction of mixture effects, using knowledge on single chemicals, is therefore desirable. We investigated pros and cons of the concentration addition (CA), independent action (IA) and generalized concentration addition (GCA) models. First we measured effects of single chemicals and mixtures thereof on steroid synthesis in H295R cells. Then single chemical data were applied to the models; predictions of mixture effects were calculated and compared to the experimental mixture data. Mixture 1 contained environmental chemicals adjusted in ratio according to human exposure levels. Mixture 2 was a potency adjusted mixture containing five pesticides. Prediction of testosterone effects coincided with the experimental Mixture 1 data. In contrast, antagonism was observed for effects of Mixture 2 on this hormone. The mixtures contained chemicals exerting only limited maximal effects. This hampered prediction by the CA and IA models, whereas the GCA model could be used to predict a full dose response curve. Regarding effects on progesterone and estradiol, some chemicals were having stimulatory effects whereas others had inhibitory effects. The three models were not applicable in this situation and no predictions could be performed. Finally, the expected contributions of single chemicals to the mixture effects were calculated. Prochloraz was the predominant but not sole driver of the mixtures, suggesting that one chemical alone was not responsible for the mixture effects. In conclusion, the GCA model seemed to be superior to the CA and IA models for the prediction of testosterone effects. A situation with chemicals exerting opposing effects, for which the models could not be applied, was identified. In addition, the data indicate that in non-potency adjusted mixtures the effects cannot always be accounted for by single chemicals

    Investigation of genetic loci shared between bipolar disorder and risk-taking propensity: potential implications for pharmacological interventions

    No full text
    Patients with bipolar disorder (BD) often show increased risk-taking propensity, which may contribute to poor clinical outcome. While these two phenotypes are genetically correlated, there is scarce knowledge on the shared genetic determinants. Using GWAS datasets on BD (41,917 BD cases and 371,549 controls) and risk-taking (n = 466,571), we dissected shared genetic determinants using conjunctional false discovery rate (conjFDR) and local genetic covariance analysis. We investigated specificity of identified targets using GWAS datasets on schizophrenia (SCZ) and attention-deficit hyperactivity disorder (ADHD). The putative functional role of identified targets was evaluated using different tools and GTEx v. 8. Target druggability was evaluated using DGIdb and enrichment for drug targets with genome for REPositioning drugs (GREP). Among 102 loci shared between BD and risk-taking, 87% showed the same direction of effect. Sixty-two were specifically shared between risk-taking propensity and BD, while the others were also shared between risk-taking propensity and either SCZ or ADHD. By leveraging pleiotropic enrichment, we reported 15 novel and specific loci associated with BD and 22 with risk-taking. Among cross-disorder genes, CACNA1C (a known target of calcium channel blockers) was significantly associated with risk-taking propensity and both BD and SCZ using conjFDR (p = 0.001 for both) as well as local genetic covariance analysis, and predicted to be differentially expressed in the cerebellar hemisphere in an eQTL-informed gene-based analysis (BD, Z = 7.48, p = 3.8E-14; risk-taking: Z = 4.66, p = 1.6E-06). We reported for the first time shared genetic determinants between BD and risk-taking propensity. Further investigation into calcium channel blockers or development of innovative ligands of calcium channels might form the basis for innovative pharmacotherapy in patients with BD with increased risk-taking propensity
    corecore