6 research outputs found

    Quantitative characterization of metabolism and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved metabolic flux analysis

    Get PDF
    For the improved production of vaccines and therapeutic proteins, a detailed understanding of the metabolic dynamics during batch or fed-batch production is requested. To study the new human cell line AGE1.HN, a flexible metabolic flux analysis method was developed that is considering dynamic changes in growth and metabolism during cultivation. This method comprises analysis of formation of cellular components as well as conversion of major substrates and products, spline fitting of dynamic data and flux estimation using metabolite balancing. During batch cultivation of AGE1.HN three distinct phases were observed, an initial one with consumption of pyruvate and high glycolytic activity, a second characterized by a highly efficient metabolism with very little energy spilling waste production and a third with glutamine limitation and decreasing viability. Main events triggering changes in cellular metabolism were depletion of pyruvate and glutamine. Potential targets for the improvement identified from the analysis are (i) reduction of overflow metabolism in the beginning of cultivation, e.g. accomplished by reduction of pyruvate content in the medium and (ii) prolongation of phase 2 with its highly efficient energy metabolism applying e.g. specific feeding strategies. The method presented allows fast and reliable metabolic flux analysis during the development of producer cells and production processes from microtiter plate to large scale reactors with moderate analytical and computational effort. It seems well suited to guide media optimization and genetic engineering of producing cell lines

    The cold-shock response in mammalian cells: investigating the HeLa cell cold-shock proteome

    No full text
    In recent years there have been a number of reports that suggest the sub-physiological (< 37 degrees C) temperature in vitro culturing of mammalian cells can result in enhanced heterologous protein production. Despite these reports, the mechanisms by which mammalian cells respond to such conditions are largely unknown. We therefore set out to use a model in vitro culture HeLa cell system to begin investigating the cold-shock response in mammalian cell systems. Sub-physiological temperature cultivation resulted in reduced growth and proliferation and a lower total cell protein content. Proteomic analysis confirmed that HeLa cells actively respond to sub-physiological temperature by up-regulating a number of proteins and immunoblot analysis confirmed that specific proteins are indeed up-regulated in a time and temperature dependent manner. Additional work is likely to improve our understanding of the cold-shock response in mammalian cells and identify candidate target proteins for cell engineering to further enhance heterologous protein production at sub-physiological temperatures

    Proliferation control strategies to improve productivity and survival during CHO based production culture: A summary of recent methods employed and the effects of proliferation control in product secreting CHO cell lines

    No full text
    Chinese Hamster Ovary cells are the primary system for the production of recombinant proteins for therapeutic use. Protein productivity is directly proportional to viable biomass, viability and culture longevity of the producer cells and a number of approaches have been taken to optimise these parameters. Cell cycle arrest, particularly in G1 phase, typically using reduced temperature cultivation and nutritional control have been used to enhance productivity in production cultures by prolonging the production phase, but the mechanism by which these approaches work is still not fully understood. In this article, we analyse the public literature on proliferation control approaches as they apply to production cell lines with particular reference to what is known about the mechanisms behind each approach
    corecore