23 research outputs found

    Reverse iontophoresis of lithium: electrode formulation using a thermoreversible polymer

    No full text
    This work investigated the use of a thermoreversible get as a collector vehicle in reverse iontophoresis applications. A 20% (w/w) aqueous gel of Pluronic F127 was a suitable receptor medium to be used at the cathodal chamber. In vitro iontophoresis experiments investigated the simultaneous extraction of lithium (analyte of interest) and sodium (used as an internal standard) into either a control buffer or a gelled receptor. The gelification process at room temperature provided a suitable consistency and contact with the skin surface during the iontophoresis experiments. Subsequent cooling of the gelled solution to 4 degreesC allows an easy recovery of lithium and sodium for later quantification. Both the lithium extraction fluxes and the lithium to sodium ratio of extraction fluxes were linearly related to the subdermal lithium concentration. On the whole, the results show that thermoreversible polyiner solutions offer a simple and convenient way to handle samples in reverse iontophoresis Studies. (C) 2004 Elsevier B.V. All rights reserved

    Transdermal delivery of peptides by iontophoresis

    No full text
    Transdermal administration by iontophoresis (enhanced transport via the skin using the driving force of an applied electric field) has been successfully demonstrated but no formal relationship between peptide sequence/structure and efficiency of delivery has been established. There are notable examples, such as the lipophilic leutinizing hormone releasing hormone (LHRH) analogs, Nafarelin and Leuprolide, that exhibit down-regulation of their own transport across the skin under the influence of an iontophoretic current. The hypothesis that this phenomenon is due to neutralization of the skin's net negative charge by these cationic peptides was examined with LHRH oligopeptides. The impact of these compounds on the electroosmotic flow of solvent into the skin, which is induced by iontophoresis and which contributes significantly to the electrotransport of large, positively charged ions, was examined and quantified. Close juxtaposition of cationic and lipophilic residues profoundly inhibited electroosmosis and, presumably, peptide flux. The results indicate that the lipophilicity of the oligopeptides facilitates van der Waals interactions with hydrophobic patches along the transport route, thereby permitting the positively charged oligopeptide to interact with carboxylate side chains that give the skin its net negative charge at neutral pH. The lipophilic, cationic oligopeptide, therefore, becomes anchored in the transport path, neutralizing the original charge of the membrane, and completely altering the permselective properties of the skin

    Microemulsions for topical delivery of 8-methoxsalen

    No full text
    8-Methoxsalen (8-MOP) and related furocumarins have been extensively used for the treatment of hyperproliferative skin diseases in association with long-wavelength UVA light. In order to develop alternative formulations for the topical administration of 8-MOP, microemulsions were evaluated as delivery vehicles. Six microemulsion formulations were prepared using water, isopropyl myristate (IPM) and Tween(R) 80. Span(R) 80: 1,2-Octanediol (3:1:1.2 w/w). The microemulsions were characterized using conductimetric and dynamic light scattering analyses. The ability of the systems to deliver 8-MOP into and through the skin was evaluated in vitro using newborn pig-skin. The in vitro permeation data showed that the novel microemulsions increased the 8-MOP total penetration through the skin by order of 1.9-4.5, as compared with IPM. In general, the accumulation of 8-MOP into the skin was increased by a factor of 1.5-4.5 by the microemulsion systems with respect to their total amount of drug delivered across the skin. These results suggest that the studied microemulsion systems may be appropriate vehicles for the topical delivery of 8-MOP. (C) 2000 Elsevier Science B.V. All rights reserved
    corecore