37 research outputs found

    CHITINASE-B FROM SERRATIA-MARCESCENS-BJL200 IS EXPORTED TO THE PERIPLASM WITHOUT PROCESSING

    No full text
    A gene encoding a chitinase from Serratia marcescens BJL200 was cloned and expressed in Escherichia coli and S. marcescens. Nucleotide sequencing revealed an open reading frame encoding a 55.5 kDa protein of 499 amino acids without a typical signal peptide for export. The cellular localization of the chitinase was studied, using two types of cell fractionation methods and immunocytochemical techniques. These analyses showed that the chitinase is located in the cytoplasm in E. coli, whereas it is exported to the periplasm in 5. marcescens. Analysis of chitinase isolated from periplasmic fractions of 5. marcescens carrying the cloned gene showed that export of the enzyme is not accompanied by processing at the N-terminus. The chitinase did not show any of the characteristics that have been proposed to direct the export of other non-processed extracellular proteins such as the E. coli haemolysin and might therefore be secreted via a hitherto unknown mechanism

    CHITINASE-B FROM SERRATIA-MARCESCENS-BJL200 IS EXPORTED TO THE PERIPLASM WITHOUT PROCESSING

    No full text
    A gene encoding a chitinase from Serratia marcescens BJL200 was cloned and expressed in Escherichia coli and S. marcescens. Nucleotide sequencing revealed an open reading frame encoding a 55.5 kDa protein of 499 amino acids without a typical signal peptide for export. The cellular localization of the chitinase was studied, using two types of cell fractionation methods and immunocytochemical techniques. These analyses showed that the chitinase is located in the cytoplasm in E. coli, whereas it is exported to the periplasm in 5. marcescens. Analysis of chitinase isolated from periplasmic fractions of 5. marcescens carrying the cloned gene showed that export of the enzyme is not accompanied by processing at the N-terminus. The chitinase did not show any of the characteristics that have been proposed to direct the export of other non-processed extracellular proteins such as the E. coli haemolysin and might therefore be secreted via a hitherto unknown mechanism

    EXPRESSION OF A CHITINASE GENE FROM SERRATIA-MARCESCENS IN LACTOCOCCUS-LACTIS AND LACTOBACILLUS-PLANTARUM

    No full text
    A chitinase gene from the Gram-negative bacterium Serratia marcescens BJL200 was cloned in Lactococcus lactis subsp. lactis MG1363 and in the silage inoculum strain Lactobacillus plantarum E19b. The chitinase gene was expressed as an active enzyme at a low level in Lactococcus lactis, when cloned in the same transcriptional orientation as the gene specifying the replication protein of the vector pIL253. Using the expression vectors pMG36e and pGKV259 with lactococcal promoter fragments p32 and p59, the expression in L. lactis was increased nine- and 27-fold, respectively. An additional twofold increase was obtained after cloning the gene under the control of p59 in the high-copy number replicon pIL253. In Lactobacillus plantarum, chitinase activity was expressed from p32, and the activity was at the same level as under p32 control in L. lactis

    Inhibition of fungal plant pathogens by synergistic action of chito-oligosaccharides and commercially available fungicides

    Get PDF
    Chitosan is a linear heteropolymer consisting of β 1,4-linked N-acetyl-D-glucosamine (GlcNAc) and D-glucosamine (GlcN). We have compared the antifungal activity of chitosan with DPn (average degree of polymerization) 206 and FA (fraction of acetylation) 0.15 and of enzymatically produced chito-oligosaccharides (CHOS) of different DPn alone and in combination with commercially available synthetic fungicides, against Botrytis cinerea, the causative agent of gray mold in numerous fruit and vegetable crops. CHOS with DPn in the range of 15-40 had the greatest anti-fungal activity. The combination of CHOS and low dosages of synthetic fungicides showed synergistic effects on antifungal activity in both in vitro and in vivo assays. Our study shows that CHOS enhance the activity of commercially available fungicides. Thus, addition of CHOS, available as a nontoxic byproduct of the shellfish industry, may reduce the amounts of fungicides that are needed to control plant diseases
    corecore