19 research outputs found

    End-to-end training of object class detectors for mean average precision

    Get PDF
    We present a method for training CNN-based object class detectors directly using mean average precision (mAP) as the training loss, in a truly end-to-end fashion that includes non-maximum suppression (NMS) at training time. This contrasts with the traditional approach of training a CNN for a window classification loss, then applying NMS only at test time, when mAP is used as the evaluation metric in place of classification accuracy. However, mAP following NMS forms a piecewise-constant structured loss over thousands of windows, with gradients that do not convey useful information for gradient descent. Hence, we define new, general gradient-like quantities for piecewise constant functions, which have wide applicability. We describe how to calculate these efficiently for mAP following NMS, enabling to train a detector based on Fast R-CNN directly for mAP. This model achieves equivalent performance to the standard Fast R-CNN on the PASCAL VOC 2007 and 2012 datasets, while being conceptually more appealing as the very same model and loss are used at both training and test time.Comment: This version has minor additions to results (ablation study) and discussio

    Simultaneous object detection and ranking with weak supervision

    No full text
    A standard approach to learning object category detectors is to provide strong supervision in the form of a region of interest (ROI) specifying each instance of the object in the training images [17]. In this work are goal is to learn from heterogeneous labels, in which some images are only weakly supervised, specifying only the presence or absence of the object or a weak indication of object location, whilst others are fully annotated. To this end we develop a discriminative learning approach and make two contributions: (i) we propose a structured output formulation for weakly annotated images where full annotations are treated as latent variables; and (ii) we propose to optimize a ranking objective function, allowing our method to more effectively use negatively labeled images to improve detection average precision performance. The method is demonstrated on the benchmark INRIA pedestrian detection dataset of Dalal and Triggs [14] and the PASCAL VOC dataset [17], and it is shown that for a significant proportion of weakly supervised images the performance achieved is very similar to the fully supervised (state of the art) results

    Nebennierenmark

    No full text

    Neurodermitis constitutionalis sive atopica

    No full text
    corecore