6,648 research outputs found

    NN Interaction JISP16: Current Status and Prospect

    Full text link
    We discuss realistic nonlocal NN interactions of a new type - J-matrix Inverse Scattering Potential (JISP). In an ab exitu approach, these interactions are fitted to not only two-nucleon data (NN scattering data and deuteron properties) but also to the properties of light nuclei without referring to three-nucleon forces. We discuss recent progress with the ab initio No-core Shell Model (NCSM) approach and respective progress in developing ab exitu JISP-type NN-interactions together with plans of their forthcoming improvements.Comment: 9 pages, 3 figures, to be published in Proceedings of Few-body 19 conferenc

    Exploratory Models in a time of Big Data

    Get PDF
    This paper aims to trigger discourse about the emergence of a new type of social scientific model — Exploratory Models — which draw on Big Data, computer modeling and interdisciplinary research to tackle complex social scientific processes. First, we define Exploratory Models referring to Batty and Morgan and Morrison. We then present changes to the traditional modeling paradigm. We show how Exploratory Models circumvent challenges related to the idiosyncracy, self-reflexivity and acceleration of social phenomena, which limit predictive effectiveness of traditional models. We show that Exploratory Models are better equipped to tackle complex problems due to their capacity to process heterogeneous datasets. Having established that Exploratory Models are predominantly problem- and data-driven, we emphasize that scientific theory is indispensable to their progress. Finally, the development of an integrative platform is suggested as a way of maximizing the benefits of this approach. Discussion concludes by flagging areas for further research

    Are There Topological Black Hole Solitons in String Theory?

    Full text link
    We point out that the celebrated Hawking effect of quantum instability of black holes seems to be related to a nonperturbative effect in string theory. Studying quantum dynamics of strings in the gravitational background of black holes we find classical instability due to emission of massless string excitations. The topology of a black hole seems to play a fundamental role in developing the string theory classical instability due to the effect of sigma model instantons. We argue that string theory allows for a qualitative description of black holes with very small masses and it predicts topological solitons with quantized spectrum of masses. These solitons would not decay into string massless excitations but could be pair created and may annihilate also. Semiclassical mass quantization of topological solitons in string theory is based on the argument showing existence of nontrivial zeros of beta function of the renormalization group.Comment: 12 pages, TeX, requires phyzzx.tex, published in Gen. Rel. Grav. 19 (1987) 1173; comment added on December 18, 199

    Equilibrium and nonequilibrium thermodynamics of particle-stabilized thin liquid films

    Full text link
    Our recent quasi-two-dimensional thermodynamic description of thin-liquid films stabilized by colloidal particles is generalized to describe nonuniform equilibrium states of films in external potentials and nonequilibrium transport processes produced in the film by gradients of thermodynamic forces. Using a Monte--Carlo simulation method, we have determined equilibrium equations of state for a film stabilized by a suspension of hard spheres. Employing a multipolar-expansion method combined with a flow-reflection technique, we have also evaluated the short-time film-viscosity coefficients and collective particle mobility.Comment: 16 pages, 10 figure

    The mixing of interplanetary magnetic field lines: A significant transport effect in studies of the energy spectra of impulsive flares

    Get PDF
    Using instrumentation on board the ACE spacecraft we describe short-time scale (~3 hour) variations observed in the arrival profiles of ~20 keV nucleon^(–1) to ~2 MeV nucleon^(–1) ions from impulsive solar flares. These variations occurred simultaneously across all energies and were generally not in coincidence with any local magnetic field or plasma signature. These features appear to be caused by the convection of magnetic flux tubes past the observer that are alternately filled and devoid of flare ions even though they had a common flare source at the Sun. In these particle events we therefore have a means to observe and measure the mixing of the interplanetary magnetic field due to random walk. In a survey of 25 impulsive flares observed at ACE between 1997 November and 1999 July these features had an average time scale of 3.2 hours, corresponding to a length of ~0.03 AU. The changing magnetic connection to the flare site sometimes lead to an incomplete observation of a flare at 1 AU; thus the field-line mixing is an important effect in studies of impulsive flare energy spectra

    Modeling usual and unusual anisotropic spheres

    Full text link
    In this paper, we study anisotropic spheres built from known static spherical solutions. In particular, we are interested in the physical consequences of a "small" departure from a physically sensible configuration. The obtained solutions smoothly depend on free parameters. By setting these parameters to zero, the starting seed solution is regained. We apply our procedure in detail by taking as seed solutions the Florides metrics, and the Tolman IV solution. We show that the chosen Tolman IV, and also Heint IIa Durg IV,V perfect fluid solutions, can be used to generate a class of parametric solutions where the anisotropic factor has features recalling boson stars. This is an indication that boson stars could emerge by "perturbing" appropriately a perfect fluid solution (at least for the seed metrics considered). Finally, starting with Tolman IV, Heint IIa and Durg IV,V solutions, we build anisotropic gravastar-like sources with the appropriate boundary conditions.Comment: Final version published in IJMP

    Reducing The Gender Gap In The Physics Classroom

    Get PDF
    We investigate if the gender gap in conceptual understanding in an introductory university physics course can be reduced by using interactive engagement methods that promote in-class interaction, reduce competition, foster collaboration, and emphasize conceptual understanding. To this end we analyzed data from the introductory calculus-based physics course for non-majors at Harvard University taught traditionally or using different degrees of interactive engagement. Our results show that teaching with certain interactive strategies not only yields significantly increased understanding for both males and females, but also reduces the gender gap. In the most interactively taught courses, the pre-instruction gender gap was gone by the end of the semester. (c) 2006 American Association of Physics Teachers

    Seed populations for large solar particle events of cycle 23

    Get PDF
    Using high-resolution mass spectrometers on board the Advanced Composition Explorer (ACE), we surveyed the event-averaged ~0.1-60 MeV/nuc heavy ion elemental composition in 64 large solar energetic particle (LSEP) events of cycle 23. Our results show the following: (1) The rare isotope ^3He is greatly enhanced over the corona or the solar wind values in 46% of the events. (2) The Fe/O ratio decreases with increasing energy up to ~10 MeV/nuc in ~92% of the events and up to ~60 MeV/nuc in ~64% of the events. (3) Heavy ion abundances from C-Fe exhibit systematic M/g-dependent enhancements that are remarkably similar to those seen in ^3He-rich SEP events and CME-driven interplanetary (IP) shock events. Taken together, these results confirm the role of shocks in energizing particles up to ~60 MeV/nuc in the majority of large SEP events of cycle 23, but also show that the seed population is not dominated by ions originating from the ambient corona or the thermal solar wind, as previously believed. Rather, it appears that the source material for CME-associated large SEP events originates predominantly from a suprathermal population with a heavy ion enrichment pattern that is organized according to the ion's mass-per-charge ratio. These new results indicate that current LSEP models must include the routine production of this dynamic suprathermal seed population as a critical pre-cursor to the CME shock acceleration process
    • …
    corecore