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Abstract 
 

This paper aims to trigger discourse about the emergence of a new type of social 

scientific model – Exploratory Models – models which draw on Big Data, computer 

modelling methods and interdisciplinary research to tackle increasingly complex social 

scientific processes.  First, define Exploratory Models referring to Batty and Morgan and 

Morrison. We then present major changes introduced by Big Data and computer 

modelling to the traditional modelling paradigm. We show how Exploratory Models 

circumvent challenges related to social phenomena’s idiosyncrasy, complexity, self-

reflectivity and acceleration, which restrain predictive effectiveness of traditional social 

scientific models. We then show that Exploratory Models are better equipped to tackling 

interdisciplinary complex problems due to their capacity to process heterogeneous, 

even contradictory datasets. Having established that Exploratory Models are 

predominantly problem- and data-driven, we emphasize that scientific theory is 

indispensable to the progress of Exploratory Models. Finally, the development of an 

integrative platform for Exploratory Models is suggested as a way of maximizing the 

benefits of this approach, acknowledging the challenges to the proposed platform and to 

Exploratory Models in general. Discussion concludes by flagging areas for further 

research. 

 
 
 
 
 
 
 
 

 

Introduction 
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Despite the velocity of changes in corresponding scientific methods, little 

holistic assessment of issues posed by Big Data and computer modelling in the 

context of social science has been done so far (Kitchin 2014; Crawford and Boyd 

2012). Philosophy of science, academia and business need to reflect on the 

impact of models utilizing these technologies on society, not only on the 

generation of scientific knowledge. Otherwise, we risk falling into the trap of 

skewed data insights, rushed decision making (Crawford 2015) and 

unsustainable, yet highly profitable short-term solutions (Townsend 2013). 

Moreover, increased volumes of data on what, presented without the necessary 

context of why (Mayer-Schonberger and Cukier 2013) increases the risk of 

exploitation of a data illiterate population reliant on secondary interpretation 

(Townsend 2013).  

With these issues in mind, we aim to trigger further discourse about the 

emergence of new types of social scientific model – Exploratory Models – that 

draw on Big Data and interdisciplinary research to tackle increasingly complex 

social scientific issues. We devote considerable amount of space to showing 

differences between the traditional and Exploratory Models and emphasize 

throughout, in contrast to authors such as Anderson (2008), the role of scientific 

theory in this data-driven modelling paradigm. Finally, given that our aim is to 

provoke further discussion, we flag challenges to Exploratory Models and 

provide our replies to some of them, the rest leaving exposed to debate.  

Definition of Big Data and Exploratory Models 
 

We define Big Data after Kitchin (2014 p1) as: ‘huge in volume, high in 

velocity, diverse in variety, exhaustive in scope, fine-grained in resolution, 

containing common fields that enable the conjoining of different data sets and 

enabling adding new fields or expanding their size rapidly’. For reasons shown 

below, we believe that this relatively new phenomenon has a significant impact 

on the traditional modeling paradigm and fuels the potential success of 

Exploratory Models.  
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We define ‘Exploratory Models’ as new types of models in social sciences, 

which emerged due to the ability of researchers to use Big Data and computer 

modelling to analyze social scientific phenomena at previously unattainable 

levels of granularity and complexity. Moreover, these models use Big Data to 

become epistemologically similar to experiments and to allow higher flexibility 

in data control and analysis.  They may thus inform the debate even if sometimes 

incapable of making predictions (Bankes 1993 cited in Batty 2013 p273). Batty 

contrasts Exploratory Models with the consolidative style, which focuses on the 

models that might ultimately provide accurate or focused predictions (ibid.). We 

discuss ‘consolidative’ models as ‘traditional’ or ‘theor-driven’ modeling. 

The first tier of our definition draws on Kitchin’s (2014) terms 

‘exploratory science’ and ‘exploratory model’ referring to models using Big Data 

and computer modelling. Such models may be considered in parallel with data-

driven science (Leonelli 2014), the new empiricism (Kitchin 2014) or 

computational social science (Lazer 2009; Chang et al. 2014 et al. 2013; Blok and 

Pedersen 2014). However, in our view the key characteristic of Exploratory 

Models is the ability to not only confirm the existing theory but to provide 

theory-independent insights. Hence, the second tier of our definition sees 

Exploratory Models as models that surpass the levels of epistemic autonomy of 

models described by Morgan and Morrison (1999). 

Morgan and Morrison (1999) perceive models as autonomous because 

certain elements in their construction, rules or mathematical forms, are 

independent of researchers. Autonomous models can refine the theory used to 

design them and provide novel scientific insights (Morgan and Morrison 1999; 

Morgan 2013; Massimi 2011). Autonomous representation allows surprising the 

researcher (Morgan and Morrison 1999; Morgan 2013, Morgan 2005). They are 

thus epistemologically closer to experiments than to ‘consolidative models’, 

aiming to solely confirm the theory. 

First, we argue that Exploratory Models use Big Data to replicate the 

elements of the real world in a quest to achieve the correspondence levels of 

experiments (Winsberg 2009). Experiments capture or replicate the world inside 

the laboratory by using the same kinds of forms as ‘those existing in the wild’ 

(Morgan 2005 p320). Models that rely on artificial mathematics or alternative 
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physical domain materials are less able to provide independent insights about 

the system (ibid.). However, experiments reach perfect correspondence of 

idiosyncrasy and complexity of social phenomena only in real settings, i.e. inside 

a city on unaware subjects. Ethical and practical problems make such 

experiments unacceptable (Yasseri 2013).  

In our view, Exploratory Models may mitigate this problem. Exploratory 

Models enjoy previously unseen granularity (Blok and Pedersen 2014) and 

autonomy from the theoretical ‘artificial setting’ (Morgan and Morrison 1999 

p176). This is often helped by using Big Data simulation. As a result, according to 

Morgan, the model-experiment divide is slowly disappearing, allowing most 

stabilized visual constructions to be accepted as knowledge and ‘perceived as 

real’ (2013 p246). Moreover, ‘computer simulation may be applied to 

contradictory theories, i.e. quantum mechanics and classical molecular 

mechanics’ (Winsberg 2009 p843). Hence, some disciplines, i.e. urban planning 

(DIY City; Townsend 2013) or virtual ethnography (Morgan 2013), embrace 

Exploratory Models to investigate and ‘experience’ (ibid.) otherwise 

unobservable or too complex phenomena. Thus, Exploratory Models aim to 

replicate the target system with the accuracy similar or aspiring to that of 

experiments. The challenges of achieving such correspondence are discussed 

later, using the interdisciplinary hybrid model developed by Manley et al. (2014) 

as an example. 

Nonetheless, Exploratory Models are still far from fully delivering on the 

promise first made when they appeared in the literature. There are significant 

challenges to how much data can be modeled at what granularity. For example, 

there is no current model able to simulate driver behavior in a detailed fashion at 

a highly scalable level (Manley et al. 2014). There are also significant challenges 

related to the use of simulation in scientific investigation. Firstly, there are no 

comprehensive methods of verification and validation of simulations (Batty 2001 

and 2013; Batty and Torrens 2005). Secondly, there are risks of data 

manipulation (Leonelli 2014) or rejection of simulations by the scientific 

community as not conforming with accepted ways of understanding (Lehtinen 

and Kuorikoski 2007; Morgan 2013). Finally, the comparative epistemological 

power of a simulation (-model) and experiment depends on the quality of 
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background knowledge (Winsberg 2009 p842). Some of these problems are 

further addressed in our discussion of the role of theory in building Exploratory 

Models. 

Another characteristic of Exploratory Models contributing to their 

autonomy from theory is the increased flexibility in data control available to 

researchers (Chang et al. 2014; Wierzbicki 2007). Data flows are produced 

almost continuously and researchers control their timing (Ruppert, Law and 

Savage 2013). In comparison with censuses giving a snapshot of system’s 

dynamic (Ruppert, Law and Savage 2013; Cukier and Mayer Schonberger 2013; 

Kitchin 2014), Exploratory Models allow data generation akin to data 

monitoring. Big Data does not only reject or minimize the spatial closure of data 

but also extends the time interval over which dynamics are captured. For 

instance, Exploratory Models of urban growth use satellite imagery applied to 

topographic and thematic mapping to obtain nearly real-time high-resolution 

data, which allows identifying the spatial and temporal evolution of problem 

areas within the city (DIY City). Continuously monitored real-time data may also 

help preventing or mitigating risks before they escalate (Daqing et al. 2014; DIY 

City). In the past, data suffered from a considerable discrepancy between the 

state of the system at a time of harvesting data and the state of the system at the 

time of model building. Exploratory Models, however, achieve both spatial and 

temporal correspondence of data, the resolution of which may now be calibrated 

by researchers. Nonetheless, there are important computational and 

technological limits, as well as costs, which all increase for large-scale data (Tong 

2015). Before we address them, a discussion of major differences between 

traditional social scientific modeling and Exploratory Models follows.  

Differences between traditional and exploratory models 
 

Exploratory Models embrace the scientific view that acknowledges 

omnipresent uncertainty. Traditional modeling perceived social systems as 

clock-like mechanisms, subject to the inevitability of causal relations (Wierzbicki 

2007 p617). Models served to verify analytically derived predictions about 

isolated systems (Morgan and Morrison 1999). As recently as in 2001, the global 

economy was also seen as a clock-like mechanism, ‘governed by the laws of 
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supply and demand in a similar way as the laws of gravity govern the Universe’ 

(Taleb 2012 p459). These reductionist views were revised in the light of 

complexity theory (Batty and Torrens 2005; Batty 2008), as well as events such 

as the 2008 financial crisis disturbing financial, political and social systems. The 

increasingly connected world (Mayer-Schonberger and Cukier 2013) is 

perceived more as a universe of information flows rather than a mechanism of 

law-like regularities (Batty 2013 p48). For instance, equilibrium is no longer 

considered paramount (Batty 2008; Townsend 2013; Mayer-Schonberger and 

Cukier 2013) and ‘imbalance potentially becomes the new paradigm’ (Verebes 

2014 p38). As a consequence, models must not be isolated and ‘reduced to only 

one variety of variables when several are present’ (Batty and Torrens 2005 

p754). Thus, determinism born out of the mechanistic view of systems gives way 

to the uncertainty towards theory-born predictions (Taleb 2012; Wierzbicki 

2007; Verebes 2014). Abduction becomes an increasingly popular mode of 

inferential reasoning (Kitchin 2014).  

 Exploratory Models are ‘good’ science where traditional models had to 

use overidealization of assumptions or encountered paradox. Researchers 

increasingly emphasize operational success of models and their relationality 

(Kitchin 2014; Mayer-Schonberger and Cukier 2013), instead of theory-guided 

analytic confirmation (Winsberg 2009; Lazer 2009; Crawford and Boyd 2012). 

Although explaining phenomena accordingly to the parsimony rule (Crooks et al. 

2008 p419) has long been associated with good science, it is nowadays 

acknowledged that ‘the whole is more than the sum of its parts’ (Verebes 2014; 

Batty 2013). Correlation is employed to scrutinize micro patterns with the 

intention of capturing emergent properties (Manley et al. 2014; Batty 2013; 

Batty and Torrens 2005). The operational success of correlation may elevate it 

above analytical explanation in research contexts that try to avoid commitment 

to one level of the phenomenon at a time, for instance where the two levels are 

contradictory (Winsberg 2009 p843). Furthermore, correlation used by 

Exploratory Models may also offer immediate benefits without understanding of 

the pattern (Cukier and Mayer-Schonberger 2013). For example, correlation 

analysis of moods on Twitter could predict ‘daily up and down in Dow Jones 

Industrial Average with an accuracy of 87.6%’ (Mestyan, Yasseri and Kertesz 
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2013 p1). Nonetheless, later discussion acknowledges limitations to using 

correlation as a scientific tool. We still see theory and analytical explanation as 

indispensable to exploratory scientific research.  

Finally, Exploratory Models allow new ways of understanding the data fed 

into the model, for instance by using Big Data to challenge the relation between 

model inputs and outputs (Batty and Torrens 2005 p752). Traditional models 

investigate logical connections between inputs and outputs, not the dynamic 

itself (ibid.). If outputs and inputs are not logically connected, traditional practice 

changes the inputs, not relations (ibid.). However, in Exploratory Models, further 

examination of data relations takes place. This allows, for instance, accounting 

for self-reflectivity of systems, particularly problematic in econophysics 

(Bookstaber 2010). Big Data may produce data on such phenomena in real time 

(Wierzbicki 2007; Chang et al. 2014; Kitchin 2014). Given these differences, we 

believe that Exploratory Models overcome the below challenges faced by their 

traditional predecessors. 

Exploratory Models as more successful at modeling complex social phenomena 
than traditional models 
 

First of all, idiosyncrasy and complexity of social phenomena obstruct 

theory-led analytical models from revealing underlying causalities (Massimi 

2011; Bogen and Woodward 1988). Moreover, social phenomena exhibit high 

variability, which hinders their conceptualisation (Henrickson, McKelvey 2002). 

For instance, temporal persistence of a pattern in a given context has sometimes 

decided of it qualifying as a phenomenon (ibid. p7289), revealing the absence of 

universal criteria for pattern-to-phenomena transition. Idealized assumptions 

narrow down a model’s accuracy to limited circumstances and may render them 

inadequate (Batty 2013). Big Data provides more inclusive data classification 

and modeling (Manfred and Reggiani 2015 p334) by giving models the capacity 

to collect and analyze uncertain and unstructured data (Lazer 2009). 

Furthermore, although not discussed here, machine learning data classification 

methods (Aggarwal 2015; Henrickson 2002; Townsend 2013) support more 

effective assumption making and hence partially overcome the idiosyncrasy 

challenge. Finally, Exploratory Models analyze varied contextual clues (Chang et 
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al. 2014, p77) and thus decrease the risk of researchers omitting real underlying 

mechanisms or overlooking emergent properties (Yasseri 2013). 

Exploratory Models are also more responsive to the relation between the 

system, the model (Yasseri 2013; Ruppert, Law and Savage 2013) and the 

researcher (Morgan and Grune-Yanoff 2013). Cognitive agents learn models of 

social systems (Bookstaber 2010) and influence them (Ruppert, Law and Savage 

2013; Batty et al. 2013; Lazer 2014). Digitization increases the profitability of 

extremely quick reactions (Lazer 2014). For instance, agents consciously 

manipulated Twitter entries to affect stock prices (ibid.). Thanks to being able to 

gather almost real-time Big Data inputs Exploratory Models may be more 

effective in understanding and predicting self-reflectivity of social models. 

Finally, Exploratory Models can use voluminous datasets, often coming 

from different disciplines, to be more successful at predicting and understanding 

cascading social phenomena. This is crucial, because social systems exhibit 

cascading properties (Daqing et al. 2014; Henrickson 2002; Townsend 2013; 

Batty 2013). Effectiveness of prediction and understanding of cascading 

phenomena is crucial from the practical point of view, as the acceleration of 

phenomena threatens social systems’ stability (Taleb 2012) and risks significant 

financial losses. In 2003 a cascading energy blackout in the US and Canada had 

an approximate cost of 10 billion dollars (Daqing et al. 2014 p1). Cascading 

phenomena increase rapidly in intensity as a result of disturbance (ibid. p2). The 

more connections a given node already holds, the more likely it is to expand its 

network (Katz and Shapiro 1994), allowing potential damages to spread directly 

via a network’s structural dependencies (Daqing et al. 2014). Overload cascading 

failures propagate usually due to cooperative overload pressure, without visible 

or direct casual relation (ibid.). Therefore, given ‘the many-body effects of such 

failure interactions and the lack of real failure data’ (Daqing et al. 2014 p1), 

purely analytical models can hardly capture or predict such complex dynamic 

(ibid.). Although developing causal explanations of networked phenomena 

acceleration is a challenge to our current science (Batty 2013), Exploratory 

Models utilizing nearly N=all dataset (Cukier and Mayer-Schonberger 2013; 

Taleb 2012) may show multiple structural dependencies that accompany and 
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precede acceleration (Daqing et al. 2014 p5). Thus they offer operational value 

and actionable results, which were unavailable to traditional theory-led models. 

Furthermore, Exploratory Models may be more successful at 

understanding and predicting interdisciplinary, complex phenomena. This is 

now discussed using the interdisciplinary hybrid agent-based model of urban 

traffic developed by Manley et al. (2014). Vital in demonstrating how 

Exploratory Models support successful interdisciplinary research, the model 

combats the three-horned dilemma between generalizability over populations, 

precision of variable control and realism of observational context (McGrath 

1982). Due to the complexity of the modeled system (urban road network) it 

analyzes micro level behaviors of agents to understand the macro pattern and to 

capture emergent properties (Manley et al. 2014). Thus, it models under the 

assumption of the system’s nearly ‘boundless complexity’ (Batty and Torrens 

2005 p747). It also uses human expertise to make necessary idealizations, 

decreasing the required computational resources. By analyzing both micro and 

macro levels of psychological factors, which affect route choices of drivers, the 

model targets to a certain extent the problem of idiosyncrasy.  

Although the above example does not tackle self-reflectivity, it 

demonstrates model’s ability to combine knowledge from different fields, here 

cognitive psychology and urban planning, to meet requirements of the 

interdisciplinary inquiry into agents’ behaviour. This shows that capacity of 

Exploratory Models to process voluminous, diverse and potentially contradictory 

data allows them to be problem-driven and interdisciplinary than their 

traditional predecessors. The scope of investigation of an Exploratory Model is 

defined by the available data, not disciplinary boundaries, even if data is not 

explicitly linked to the problem. Hence, an ‘interdisciplinary convergence’ (Chang 

et al. 2014 p70) takes place, allowing usage of all potentially relevant knowledge 

to deliver most accurate solutions to the problem. The time it took in the past to 

exchange interdisciplinary knowledge at that level made such problem-based 

research hardly efficient (Cukier and Mayer-Schonberger 2013). However, Big 

Data fed into Exploratory Models increases the profitability of interdisciplinarity. 

Moreover, Mansnerus suggests that Exploratory Models may serve as ‘bridges 
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between disciplines’ (2013 p269), further contributing to proliferation and 

growth of interdisciplinary research.  

To conclude, Exploratory Models can more representative of the target 

system and less constrained by disciplinary boundaries. Despite their increased 

autonomy from theory, we now show that theory is essential to the development 

of Exploratory Models. 

The role of scientific theory in Exploratory Models 
 

Firstly, theory is crucial to effective data interpretation and presentation. 

Data manipulation may produce spurious correlations. Social media or search 

engines, which are most often data sets for Big Data correlation studies, are 

unreliable sources of information not intended for scientific purposes (Lazer 

2009 and 2014; Kitchin 2014; Crawford and boyd 2012). Google Flu Trends 

(GFT), for long considered a success story of correlation analysis (Townsend 

2013), consistently overestimated flu trends for 100 out of 108 weeks, due to 

changes in algorithm’s parameters, without many people realizing it (Lazer 

2014). Platforms such as Twitter and Facebook are constantly re-engineered, 

and it is increasingly questioned whether studies conducted even a year ago on 

data collected from these platforms can be replicated (Lazer 2014), and hence 

verified (Batty and Torrens 2005). Moreover, despite their size ‘they are not 

representative of all people’ but of very particular groups (Crawford and boyd 

2012 p669). Thus, theory should ensure that adequate parameters calibrate the 

exploratory model (Leonelli 2014; Lazer 2014). The primary function of the 

theory is to choose the necessary levels of idealization, the achievable resolution 

of patterns spotted in data and the maximum possible data stability. 

Secondly, theory calibrates risk indicators, which monitor pattern 

abnormalities and network instabilities. For instance, in High Frequency Trading 

(HFT) (ESMA 2014) algorithms analyze, model and predict the risk of trading a 

particular asset (ibid.). Given that the algorithm’s decisions are too fast for the 

human to fully supervise, the parameters’ quality is the major insurance against 

costly mistakes. Therefore, relevant financial theory is solely responsible for the 

results achieved by such algorithms. Ironically, currently such ‘data-driven’ 

models are the most dependent on theories used to create them. Using artificial 
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intelligence to calibrate algorithm’s formulas may in the future decrease this 

dependency. 

Finally, theory and vernacular knowledge incorporated into the process 

of Exploratory Model creation highlight soft factors important for model 

implementation (Morgan and Grune-Yanoff 2013; Wierzbicki 2007; Trutnevyte 

2014). For instance, a qualitative story surrounding the Exploratory Model of 

energy consumption in a city ensures its compliance with its regulatory contexts 

at the time of implementation and in the future. This is crucial to avoid research 

and operational implementation delays (Batty 2013; Crawford, 2015). 

Furthermore, Exploratory Models must be correctly interpreted and organized, 

as otherwise they only provide information, not knowledge (Wierzbicki, 2007). 

Moreover, we now argue that theory enables interdisciplinary Exploratory 

Models to be integrated into platforms and therefore respond to problems of 

very complex systems, such as cities or wide-spanning phenomena, which would 

not be analyzed by a singular Exploratory Model due to computing limits or data 

diversity.  

The role of theory in integrating Exploratory Models 
 
 Theory organizes information collected by Exploratory Models in order to 

turn it into knowledge (Wierzbicki 2007). The focus of Exploratory Models is 

often on showing how much can be modeled and with what granularity. This is 

scientifically unproductive, as rendering a problem visible is not solving it 

(Townsend 2013). Thus, increasing the models’ computational power without 

developing frameworks for understanding the results produced might generate 

models as complex as target systems (Wierzbicki 2007; Leonelli 2014). For 

instance, the Protein Data Bank (Protein Data Bank) is already too voluminous to 

be directly used in research and must be partitioned into secondary databases. 

We suggest developing a strategy for integrating Exploratory Models to avoid a 

similar outcome.  

 Integrating Exploratory Models should start with developing quantitative 

models and enabling exchange of information. Otherwise, the qualitative 

framework might be proven invalid by technical restrictions of the system. 

Simon’s (1962) view of complex systems as hierarchical structures is thus 
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refined. Complex systems are hierarchic in nature, i.e. composed of interrelated 

sub-systems (ibid. 468). Contrary to Simon’s assumption that internal dynamic 

of the system is denser than its external interactions (ibid. p477), urban science 

shows that social systems might exhibit as strong interactions with their external 

environment as between internal components (Batty 2013). Nevertheless, we 

take Simon’s view that systems can be divided into sub-systems (1962 p468) 

until some elementary level is reached (ibid.), i.e. an individual agent. A broader 

definition of hierarchy does not necessitate power relations between systems 

(ibid.). Two systems might connect in a hierarchical, subordinate manner but 

they may also enter into horizontal relations, therefore rendering such hierarchy 

similar to the semi-lattice, also used in urban science conceptions of cities 

(Townsend 2013 p143; Batty 2013 p23). It is also possible that individual sub-

systems interact with external sub-systems. Hence, the scope of the system 

should extend to horizontal, long-range spheres of influence or even ‘sequences 

of networks’ (Batty 2013 p106). Moreover, to fully utilize the potential of 

Exploratory Models it is worth exploring possible algorithms, which would 

incrementally update the data classification results for a database whose values 

keep changing, as opposed to the more traditional approach, where ‘algorithms 

dealing with uncertain data only capture a data snapshot’ (Cheng and Fang 2015 

p441). Finally, hierarchy is not measured in ‘spatial terms’ (Simon 1962 p468) or 

according to ‘size ordering’ (Batty 2013 p152). Overlapping hierarchies of 

intensity of external and internal interactions are more fit to social systems 

(Simon 1962; Batty 2013 p175), as they may be linked to the intensity of 

potential cascading failures. Hierarchy is therefore linked to the volume of 

interactions between systems (Simon 1962) but also to the impact which one 

system’s disturbance may have across network. It is important to note that due 

to horizontal connections between sub-systems, there may be strong long-range 

correlations (Daqing et al. 2014) between sub-systems. Hence, the question 

arises whether one measures a system’s position in a hierarchy also by 

accounting for its long-range influence, or whether only close-range impacts are 

prioritized.  

Despite its complexity, such a platform would enable quick and efficient 

exchange of information, essential to interdisciplinary convergence between 
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Exploratory Models. However, the platform dominated by quantitative models 

risks that policymakers or researchers from outside disciplines directly involved 

in model building would not understand complex results. Moreover, we cannot 

expect models of multiple systems to share spatial and temporal foci, 

disciplinary perspective, objectives, system boundaries or format of the inputs 

and outputs (Trutnevyte et al. 2014). Thus, qualitative storylines should put 

exploratory data analyses into context of existing models, scientific theories and 

operational policies, therefore turning them into knowledge. Furthermore, 

‘interrelated ideas could be structured as overlapping hierarchies’ (Batty 2013 

p175), thus enhancing their methodological conformance with quantitative 

representations.  

Combining qualitative and quantitative representations of the system 

offers a possible methodology for verification of integrated Exploratory Models. 

Quantitative models may be validated against qualitative storylines and 

expertise of researchers (Trutnevyte et al. 2014; Wierzbicki 2007; Morgan and 

Grune-Yanoff 2013). Furthermore, theory allows testing models against other 

existing models in the field. First, theory locates a model’s area of expertise 

(Trutnevyte et al. 2014), which give priority of insights delivered by “expert 

models” over insights delivered by “less specialized” models (ibid.). For instance, 

in Trutnevyte three different models deliver two different values for the 

necessary back-up capacity of energy (2014). The prediction given by the model 

with the highest data resolution in this field, i.e. expertise, is given priority over 

the two others, which do not focus to that extent on the variable of required 

back-up capacity (ibid.). Although these methods of verification still need further 

research into their limits and risks, the suggested framework sets the ground. 

What is more, combining theoretical and quantitative frameworks may 

improve the capacity to anticipate and mitigate the models’ self-reflectivity. 

None of individual Exploratory Models we evoked in this discussion managed to 

predict its own impact on the system. However, incorporating a theoretical 

framework, which accounts for not only formal soft knowledge, such as legal and 

institutional issues, but also vernacular knowledge concerning the behavior of 

individual humans, increases the probability of anticipating self-reflectivity 

(Ruppert, Law, Savage 2013; Mansnerus 2013). It might also discover ways in 
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which models would affect one another, as well as flag further emergent 

qualities. If successful, such integration considerably extends the 

correspondence of Exploratory Models, as it renders them more flexible with 

regards to the target system. 

Finally, the inclusion of a variety of different models in an integrative 

platform largely circumvents the concern that models are only relevant to a 

limited number of contexts (Trutnevyte et al. 2014). It is possible that a model 

with multiple expertise areas may be developed in the future. However, due to 

our current technological constraints, as demonstrated by the hybrid agent-

based model (Manley et al. 2014), lowering computational requirements without 

considerable trade-offs in accuracy is problematic (McGrath 1982; Chang et al. 

2014). Integrating a variety of models with separate expertise fields circumvents 

this challenge to some extent. Due to the scope of this discussion, structure of an 

integrative platform is not further discussed. Major related challenges are now 

presented.  

Scientific and philosophical challenges to Exploratory Models and integrative 
platforms 
 
 The first critique is analytical impenetrability of Exploratory Models. As a 

complex network of models, the platform exhibits few explicit casual relations 

between data or models. Thus, sources of distortions in results are analytically 

intractable (Winsberg 2009; Lazer 2009; Batty and Torrens 2005). Furthermore, 

even if a method for verification of individual models is found, the platform as a 

whole might require different verification criteria and show emergent 

properties. The question of the allowed degree of impenetrability of platforms 

and inability to track the exact ways different outcomes emerge may become as 

much of a political as a scientific question. It is possible that human expertise will 

remain a decisive factor in assessing the implementation feasibility of any 

platform. 

 Furthermore, some claim that data classification should precede model 

integration. Initiatives, such as the Chicago Data Dictionary (Chapin Hall; 

Townsend 2013; Glodsmith and Crawford 2014) have approached modeling 

complex systems from this angle. Integrating models prior to classifying data 
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implies accepting many idealisations for data presentation and selection. 

Moreover, uncovering techniques for minimum mathematical or modeling 

interference in data classification could increase the correspondence of 

Exploratory Models. Nevertheless, a strong competition on ‘global data markets’ 

(Townsend 2013 p301) between research centres, businesses and individuals 

forces researchers to adapt to competitive environments (Glaeser 2011). If they 

fail to deliver responses and instead only flag existing problems, the data will be 

‘most likely used for individual gain, instead of towards holistic improvement to 

our society’ (Townsend 2013 p165). Moreover, simply revealing complexity and 

uncertainty may prompt rushed decision-making on operational and research 

levels. It is therefore secondary to delivering timely response mechanisms, which 

are facilitated by integrating models rather than data. 

 Finally, the scope of a suggested platform is unclear. Should a platform’s 

boundaries be mapped according to structural similarity of models included or of 

intensity of their external interactions? There is a dilemma between automated 

and human-led partitions, already faced by secondary databases of the Protein 

Data Bank. Delineating boundaries for platforms of social systems, more complex 

and varied in nature, poses even more challenges. Furthermore, even if platforms 

would be problem-based, as Exploratory Models often are, questions arise about 

the boundaries of a problem. Hence, partitioning the system into platforms leads 

to self-contradictory reasoning: first, Exploratory Models assume systems to 

exhibit boundless complexity (Batty and Torrens 2005 p747); then an 

integrative platform restricts the systems’ scope. Thus, platforms may be 

criticized as a mechanistic, albeit more complex, view of the world. The shift 

away from thinking about the world as a clock to conceiving it as a clock with 

more functions is not the goal of Exploratory Models. 

Operational challenges 
 

The first operational challenge concerns control. Data is the currency of 

information economy (Taleb 2012; Townsend 2013; Verebes 2014) and the 

proposed platform accumulates high quality scientific data. Many see such 

grand-scale civic and scientific surveillance as authoritarian (Verebes 2014 p14). 

Furthermore, the wider and more transparent platforms become, the higher a 
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platform’s influence on the system and the higher profitability of manipulation. 

Data-intensive platforms bringing quick and accurate solutions increase the 

divide between data poor and data rich population (Crawford and boyd 2012; 

Townsend 2013). Due to costs of data curation (Leonelli 2014), the divide may 

correspond to financial inequality. Necessary regulatory measures should be 

implemented to avoid this negative influence of exploratory modelling on target 

systems. 

Moreover, levels of desired democratization of data are not clear 

(Townsend 2013). Falling costs of research due to open source and Big Data 

seem temporal and soon costs of data curation may exceed profits from its 

availability (Leonelli 2014). Furthermore, Townsend worries that most smart 

apps and “civic hacks” serve their own profit rather than common good (2013 

p230). Decentralizing science (ibid.) may allow technologies such as chemical 

weapons, TDCs kits (Fields 2011) or statistical sources to spread beyond control. 

It would be a very undesirable effect, if the good of the individual were gradually 

favoured over the good of the society (Townsend 2013).  

 What is more, concerns regarding data privacy appear (Yasseri 2013; 

Crawford and Boyd 2012; Blok and Pedersen 2014). Firstly, the suggested 

platform requires excessive access to personal data, often in unstructured form, 

which obstructs effective legal restrictions on the collection of such information 

(Townsend 2013 p293). Despite efforts such as Data Protection Reform 

(Slaughter and May 2013 and 2014; Norton Rose Fulbright 2014), the law lags 

behind technology. Moreover, recent studies show that healthcare providers 

forced to comply with Big Data technologies could not afford adequate cyber 

security measures (Maerian 2016). Furthermore, there is a trade-off between 

privacy and security (Townsend 2013; Rabari and Storper 2014). It is already 

possible to track individual Netflix users via “anonymous” data (Singel 2012). In 

addition, advances in visual machine learning techniques could lead to crimes 

being detected automatically by CCTV cameras (Li 2015). High numbers of 

“potential crimes” automatically reported to police stations will slow down 

police operations, every such “potential case” needing human interpretation. On 

the other hand, such techniques could effectively fight certain crimes, as 

illustrated by Polaris fight against human trafficking (Gesher 2013).  
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 Furthermore, it is difficult to secure conscious consent from data 

producers. For example, it was shown that only about 7% of Britons actually 

read the Term and Conditions of social media sites or services bought (Smithers 

2011). Regulating data collection for Exploratory Models is problematic, as 

traditionally the purpose of collection must be stated (Kitchin 2014; Crawford 

and boyd 2012), whereas Exploratory Models derive their efficiency and 

accuracy from analysing data not explicitly related to the problem. Hence, 

regulating justification processes for collecting such information poses a 

considerable challenge.  

Exploratory Models also risk increasing a system’s overall volatility. The 

human eye cannot control an algorithm’s real-time reaction when response time 

is very short, i.e. nanoseconds (ESMA 2014; Taleb 2012). Therefore, results 

delivered by algorithms are not verifiable on a daily basis but only in the context 

of overall success or failure. Due to the acceleration of social scientific 

phenomena there is a risk of small technical flaws in one part of the network 

resulting in a general structural failure. Ideally, an algorithm should isolate 

models in the event of failure, as blockchain can isolate the sequence of the chain 

under attack (Szabo 1997). However, the complexity of social systems makes 

isolation of subsystems a yet unsolved task. Proponents of blockchain technology 

currently explore various solutions. 

Moreover, a system’s volatility is increased through the “Fat Finger” 

problem (Lewis 2015 p98; ESMA 2014; Hagstromer and Norden 2012): one 

mistaken data input into the parameters of the algorithm, for instance 1000 

points instead of 100 may generate dire outcomes. In financial models, although 

Fat Finger risk brings temporary volatility, such as the Flash Crash1 (The 

Economist 2010a and 2010b; ESMA 2014), the market quickly regains balance. 

However, financial models are unique in their capacity to regain balance with 

such speed. Other social models, i.e. of urban growth or military actions, do not 

have target systems with such rebounding mechanisms.  

                                                        
1 On May 6th 2010 the Dow Jones Industrial Average fell by nearly 1,000 points in 30 
minutes but rebounded quickly. Many blamed HFT firms, which fled the market in a 
‘cascading’ run (The Economist 2010b). 
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Finally, due to increasing levels of self-reflectivity of social systems, the 

question of what new social groups the exploratory science may create should be 

investigated (Ruppert, Law and Savage 2013). Past social scientific measures, 

such as censuses and survey techniques generated new social entities, such as 

“the national economy” or caste groups (Ruppert, Law and Savage 2013). It may 

be observed that data overflow resulting from exploratory scientific methods 

and correlation techniques contributes to the increasing distrust of citizens 

towards the media and experts. The occurrence of events such as 2008 Financial 

Crisis despite the assurances from governments and experts of the soundness of 

our social system heavily undermined public confidence in the models and 

systems in place. Complexity of datasets used by Exploratory Models as well as 

their focus on solving the problem without necessarily providing a clear 

theoretical explanation thereof may thus deepen alienation of science, which 

previously relied on theory to establish a dialogue with the society.  

Recommendations for further research 
 

Firstly, visualization and simulation require further research in the 

context of exploratory science, particularly into relevant regulatory and 

verification methodologies. Interpreting data produced by Exploratory Models is 

a challenge, especially since there is a shortage of adequately qualified people 

(Chang et al. 2014). Interactive visual analytics (IVA) help interpreting complex 

patterns delivered by Exploratory Models and are designed to promote more 

transparent and creative decision-making (Cybulski 2015). Its potential should 

be therefore evaluated. What is more, philosophy of science should take a more 

operationalist, or even regulatory approach to investigating Exploratory Models. 

Modern philosophers of science should consider perspectives of both academia 

and business. Finally, the potential impact of Machine Learning on Exploratory 

Models and integrative platforms is a promising field for further investigation. 

Machine Learning may support both the construction of individual Exploratory 

Models, i.e. continuous improvement of the data production, and the 

construction of the platform suggested. Machine Learning could optimize 

information exchange, prevent structural failures and support human 

interpretation of the models’ results by suggesting novel insights, as done by the 
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IBM Watson Discovery system (IBM Watson). Its implications, potential and 

threats should be therefore evaluated. 

Conclusion 
 
 To conclude, in this discussion we have aimed to present the most 

pressing and disruptive challenges posed by Big Data, computer modeling and 

Exploratory Models to the modeling paradigm in social sciences. In order to 

deliver a comprehensive and discourse-provoking discussion, we drew on a 

number of fields, such as philosophy of science and urban science. Discussion of 

literature on the topic and case studies of models utilizing Big Data and 

computer modelling revealed potential of Exploratory Models to overcome the 

challenges faced by traditional models. We therefore argue that Exploratory 

Models overcome challenges of idiosyncrasy and complexity, self-reflectivity and 

social systems entering into cascading effects, which obstruct success of 

traditional social scientific models. Furthermore, we show that Exploratory 

Models support interdisciplinary research and are well equipped to handle 

interdisciplinary complex problems. Finally, we evaluate challenges faced by 

exploratory science, such as integrating Exploratory Models. We reply to this 

challenge by suggesting an integrative platform for Exploratory Models. 

Throughout the discussion, we emphasise the indispensability of scientific 

theory for exploratory science. We hope that this discussion will inform further 

epistemological and empirical investigation of Big Data, computer modeling and 

exploratory science. 
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