29,350 research outputs found
Gauge drivers for the generalized harmonic Einstein equations
The generalized harmonic representation of Einstein's equations is manifestly hyperbolic for a large class of gauge conditions. Unfortunately most of the useful gauges developed over the past several decades by the numerical relativity community are incompatible with the hyperbolicity of the equations in this form. This paper presents a new method of imposing gauge conditions that preserves hyperbolicity for a much wider class of conditions, including as special cases many of the standard ones used in numerical relativity: e.g., K freezing, Gamma freezing, Bona-Massó slicing, conformal Gamma drivers, etc. Analytical and numerical results are presented which test the stability and the effectiveness of this new gauge-driver evolution system
Extreme ultraviolet emission lines of Ni XII in laboratory and solar spectra
Wavelengths for emission lines arising from 3s23p5-3s3p6 and 3s23p5-3s23p43d transitions in Ni XII have been measured in extreme ultraviolet spectra of the Joint European Torus(JET) tokamak. The 3s23p5 2P1/2-3s23p4(3P)3d 2D3/2 line is found to lie at 152.90 ± 0.02 A, a significant improvement over the previous experimental determination of 152.95 ± 0.5 A. This new wavelength is in good agreement with a solar identification at 152.84 ± 0.06 A, confirming the presence of this line in the solar spectrum. The Ni XII feature at 152.15 A may be a result only of the 3s23p5 2P3/2-3s23p4(3P)3d 2D5/2 transition, rather than a blend of this line with 3s23p5 2P3/2-3s23p (3P)3d 2P1/2, as previously suggested. Unidentified emission
lines at 295.32 and 317.61 A in solar flare spectra from the Skylab mission are tentatively identified as the 3s23p5 2P3/2-3s3p6 2S1/2 and 3s23p5 2P1/2-3s3p6 2S1/2 transitions in Ni XII, which have laboratory wavelengths of 295.33 and 317.50 A, respectively. Additional support for these identifications is provided by the line intensity ratio for the solar features, which shows good agreement between theory and observation
Jet Collimation by Small-Scale Magnetic Fields
A popular model for jet collimation is associated with the presence of a
large-scale and predominantly toroidal magnetic field originating from the
central engine (a star, a black hole, or an accretion disk). Besides the
problem of how such a large-scale magnetic field is generated, in this model
the jet suffers from the fatal long-wave mode kink magnetohydrodynamic
instability. In this paper we explore an alternative model: jet collimation by
small-scale magnetic fields. These magnetic fields are assumed to be local,
chaotic, tangled, but are dominated by toroidal components. Just as in the case
of a large-scale toroidal magnetic field, we show that the ``hoop stress'' of
the tangled toroidal magnetic fields exerts an inward force which confines and
collimates the jet. The magnetic ``hoop stress'' is balanced either by the gas
pressure of the jet, or by the centrifugal force if the jet is spinning. Since
the length-scale of the magnetic field is small (< the cross-sectional radius
of the jet << the length of the jet), in this model the jet does not suffer
from the long-wave mode kink instability. Many other problems associated with
the large-scale magnetic field are also eliminated or alleviated for
small-scale magnetic fields. Though it remains an open question how to generate
and maintain the required small-scale magnetic fields in a jet, the scenario of
jet collimation by small-scale magnetic fields is favored by the current study
on disk dynamo which indicates that small-scale magnetic fields are much easier
to generate than large-scale magnetic fields.Comment: 14 pages, no figur
Magnetic Fields in Star-Forming Molecular Clouds I. The First Polarimetry of OMC-3 in Orion A
The first polarimetric images of the OMC-3 region of the Orion A filamentary
molecular cloud are presented. Using the JCMT, we have detected polarized
thermal emission at 850 microns from dust along a 6' length of the dense
filament. The polarization pattern is highly ordered and is aligned with the
filament throughout most of the region. The plane-of-sky magnetic field
direction is perpendicular to the measured polarization. The mean percentage
polarization is 4.2% with a 1 sigma dispersion of 1%. This region is part of
the integral-shaped filament, and active star formation is ongoing along its
length. The protostellar outflow directions do not appear to be consistently
correlated with the direction of the plane-of-sky field or the filament
structure itself. Depolarization toward the filament center, previously
detected in many other star-forming cores and protostars, is also evident in
our data. (abstract abridged)Comment: 9 pages plus 2 figures (1 colour); accepted for publication in the
March 10, 2000 issue (vol. 531 #2) of The Astrophysical Journa
High temperature onset of field-induced transitions in the spin-ice compound Dy2Ti2O7
We have studied the field-dependent ac magnetic susceptibility of single
crystals of Dy2Ti2O7 spin ice along the [111] direction in the temperature
range 1.8 K - 7 K. Our data reflect the onset of local spin ice order in the
appearance of different field regimes. In particular, we observe a prominent
feature at approximately 1.0 T that is a precursor of the low-temperature
metamagnetic transition out of field-induced kagome ice, below which the
kinetic constraints imposed by the ice rules manifest themselves in a
substantial frequency-dependence of the susceptibility. Despite the relatively
high temperatures, our results are consistent with a monopole picture, and they
demonstrate that such a picture can give physical insight to the spin ice
systems even outside the low-temperature, low-density limit where monopole
excitations are well-defined quasiparticles
Recent Experiments with Bose-Condensed Gases at JILA
We consider a binary mixture of two overlapping Bose-Einstein condensates in
two different hyperfine states of \Rb87 with nearly identical magnetic moments.
Such a system has been simply realized through application of radiofrequency
and microwave radiation which drives a two-photon transition between the two
states. The nearly identical magnetic moments afford a high degree of spatial
overlap, permitting a variety of new experiments. We discuss some of the
conditions under which the magnetic moments are identical, with particular
emphasis placed on the requirements for a time-averaged orbiting potential
(TOP) magnetic trap.Comment: 9 pages, 5 figures; corrected post-publication editio
- …
