11,809 research outputs found

    Quark Mixings in SU(6)×SU(2)RSU(6)\times SU(2)_R and Suppression of VubV_{ub}

    Get PDF
    The quark mixing matrix VCKMV_{CKM} is studied in depth on the basis of superstring inspired SU(6)×SU(2)RSU(6)\times SU(2)_R model with global flavor symmetries. The sizable mixings between right-handed down-type quark DcD^c and colored Higgs field gcg^c potentially occur but no such mixings in up-type quark sector. In the model the hierarchical pattern of VCKMV_{CKM} is understood systematically. It is shown that due to large DcD^c-gcg^c mixings VubV_{ub} is naturally suppressed compared to VtdV_{td}. It is pointed out that the observed suppression of VubV_{ub} is in favor of the presence of SU(2)RSU(2)_R gauge symmetry but not in accord with generic SU(5) GUT.Comment: 10pages with no figure, Latex fil

    Low-Ionization Emission Regions in Quasars: Gas Properties Probed with Broad O I and Ca II Lines

    Full text link
    We have compiled the emission-line fluxes of O I 8446, O I 11287, and the near-IR Ca II triplet (8579) observed in 11 quasars. These lines are considered to emerge from the same gas as do the Fe II lines in the low-ionized portion of the broad emission line region (BELR). The compiled quasars are distributed over wide ranges of redshift (0.06 < z < 1.08) and of luminosity (-29.8 < M_B < -22.1), thus representing a useful sample to investigate the line-emitting gas properties in various quasar environments. The measured line strengths and velocities, as functions of the quasar properties, are analyzed using photoionization model calculations. We found that the flux ratio between Ca II and O I 8446 is hardly dependent on the redshift or luminosity, indicating similar gas density in the emission region from quasar to quasar. On the other hand, a scatter of the O I 11287/8446 ratios appears to imply the diversity of the ionization parameter. These facts invoke a picture of the line-emitting gases in quasars that have similar densities and are located at regions exposed to various ionizing radiation fluxes. The observed O I line widths are found to be remarkably similar over more than 3 orders of magnitude in luminosity, which indicates a kinematically determined location of the emission region and is in clear contrast to the well-studied case of H I lines. We also argue about the dust presence in the emission region since the region is suggested to be located near the dust sublimation point at the outer edge of the BELR.Comment: Accepted for publication in ApJ; minor rewordings mad

    Mediation of Supersymmetry Breaking via Anti-Generation Fields

    Get PDF
    In the context of the weakly coupled heterotic string, we propose a new model of mediating supersymmetry breaking. The breakdown of supersymmetry in the hidden sector is transmitted to anti-generation fields via gravitational interactions. Subsequent transmission of the breaking to the MSSM sector occurs via gauge interactions. It is shown that the mass spectra of superparticles are phenomenologically viable.Comment: 8pages, LaTeX, 1 figure, final version to appear in Prog. Theor. Phys. Vol.103, No.6 (2000

    How Can We Obtain a Large Majorana-Mass in Calabi-Yau Models ?

    Get PDF
    In a certain type of Calabi-Yau superstring models it is clarified that the symmetry breaking occurs by stages at two large intermediate energy scales and that two large intermediate scales induce large Majorana-masses of right-handed neutrinos. Peculiar structure of the effective nonrenormalizable interactions is crucial in the models. In this scheme Majorana-masses possibly amount to O(10^{9 \sim 10}\gev) and see-saw mechanism is at work for neutrinos. Based on this scheme we propose a viable model which explains the smallness of masses for three kind of neutrinos νe,νμ and ντ\nu _e, \nu _{\mu} \ {\rm and}\ \nu _{\tau}. Special forms of the nonrenormalizable interactions can be understood as a consequence of an appropriate discrete symmetry of the compactified manifold.Comment: 30-pages + 6-figures, LaTeX, Preprint DPNU-94-02, AUE-01-9

    Probing the stellar wind environment of Vela X-1 with MAXI

    Full text link
    Vela X-1 is among the best studied and most luminous accreting X-ray pulsars. The supergiant optical companion produces a strong radiatively-driven stellar wind, which is accreted onto the neutron star producing highly variable X-ray emission. A complex phenomenology, due to both gravitational and radiative effects, needs to be taken into account in order to reproduce orbital spectral variations. We have investigated the spectral and light curve properties of the X-ray emission from Vela X-1 along the binary orbit. These studies allow to constrain the stellar wind properties and its perturbations induced by the compact object. We took advantage of the All Sky Monitor MAXI/GSC data to analyze Vela X-1 spectra and light curves. By studying the orbital profiles in the 4104-10 and 102010-20 keV energy bands, we extracted a sample of orbital light curves (15{\sim}15% of the total) showing a dip around the inferior conjunction, i.e., a double-peaked shape. We analyzed orbital phase-averaged and phase-resolved spectra of both the double-peaked and the standard sample. The dip in the double-peaked sample needs NH2×1024N_H\sim2\times10^{24}\,cm2^{-2} to be explained by absorption solely, which is not observed in our analysis. We show how Thomson scattering from an extended and ionized accretion wake can contribute to the observed dip. Fitted by a cutoff power-law model, the two analyzed samples show orbital modulation of the photon index, hardening by 0.3{\sim}0.3 around the inferior conjunction, compared to earlier and later phases, hinting a likely inadequacy of this model. On the contrary, including a partial covering component at certain orbital phase bins allows a constant photon index along the orbital phases, indicating a highly inhomogeneous environment. We discuss our results in the framework of possible scenarios.Comment: 10 pages, 9 figures, accepted for publication in A&

    Warm absorber, reflection and Fe K line in the X-ray spectrum of IC 4329A

    Get PDF
    Results from the X-ray spectral analysis of the ASCA PV phase observation of the Seyfert 1 galaxy IC 4329A are presented. We find that the 0.4 - 10 keV spectrum of IC 4329A is best described by the sum of a steep (Γ1.98\Gamma \sim 1.98) power-law spectrum passing through a warm absorber plus a strong reflection component and associated Fe K line, confirming recent results (Madejski et al. 1995, Mushotsky et al. 1995). Further cold absorption in excess of the Galactic value and covering the entire source is also required by the data, consistent with the edge-on galactic disk and previous X-ray measurements. The effect of the warm absorber at soft X-ray energies is best parameterized by two absorption edges, one consistent with OVI, OVII or NVII, the other consistent with OVIII. A description of the soft excess in terms of blackbody emission, as observed in some other Seyfert 1 galaxies, is ruled out by the data. A large amount of reflection is detected in both the GIS and SIS detectors, at similar intensities. We find a strong correlation between the amount of reflection and the photon index, but argue that the best solution with the present data is that given by the best statistical fit. The model dependence of the Fe K line parameters is also discussed. Our best fit gives a slightly broad (σ0.11±0.08\sigma \simeq 0.11 \pm 0.08 keV) and redshifted (E 6.20±0.07\simeq 6.20 \pm 0.07 keV) Fe K line, with equivalent width \simeq 89 ±\pm 33 eV. The presence of a weak Fe K line with a strong reflection can be reconciled if one assumes iron underabundances or ionized reflection. We also have modeled the line with a theoretical line profile produced by an accretion disk. This yields results in better agreement with the constraints obtained from the reflection component.Comment: Accepted for publication in The Astrophysical Journal, 10th February 1996 issue; 24 pages and 8 figures + 1 table tared, compressed and uuencoded (with uufiles

    The 144 second periodic flux variations during x ray turn-on of Hercules X-1

    Get PDF
    Hercules X-1 is a well known bright binary X ray pulsator. It has a 1.70 day orbital period, a pulsation period of 1.24 second, and a 35 day semiperiodic variability. The discovery is reported of a new 144 second periodicity in the X ray emission from Her X-1. The periodicity is seen in X ray observations of Her X-1 by the LAC instrument onboard the Ginga satellite during Aug. to Sep. 1988. The periodic flux variations occur during the time of X ray turnon at the beginning of a high state of Her X-1, in the same time that a pre-eclipse dip also occurs. An analysis of the LAC spectra of Her X-1 during this period is also presented. Large changes in spectral shape occur associated with the dip
    corecore