5,616 research outputs found

    Improving the worthiness of the Elder problem as a benchmark for buoyancy driven convection models

    Get PDF
    An important trapping mechanism associated with the geosequestration of CO~2~ is that of dissolution into the formation water. Although supercritical CO~2~ is significantly less dense than water, experimental data reported in the literature show that the density of an aqueous solution of CO~2~ could be slightly greater. Under normal situations, the transfer of gas to solution is largely controlled by the relatively slow process of molecular diffusion. However, the presence of variable densities can trigger off gravity instabilities leading to much larger-scale convection processes. Such processes can potentially enhance rates of dissolution by an order of magnitude. Consequently there is a need for future performance assessment models to incorporate buoyancy driven convection (BDC). A major issue associated with BDC models is that of grid convergence when benchmarking to the Elder problem. The Elder problem originates from a heat convection experiment whereby a rectangular Hele-Shaw cell was heated over the central half of its base. A quarter of the way through the experiment, Elder (1967) observed six plumes, with four narrow plumes in the center and two larger plumes at the edges. As the experiment progressed, only four plumes remained. The issue is that depending on the grid resolution used when seeking to model this problem, modelers have found that different schemes yield steady states with either one, two or three plumes. The aim of this paper is to clarify and circumvent the issue of multiple steady state solutions in the Elder problem using a pseudospectral method

    Acoustic impacts of offshore wind energy on fishery resources an evolving source and varied effects across a wind farm's lifetime

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mooney, T. A., Andersson, M. H., & Stanley, J. Acoustic impacts of offshore wind energy on fishery resources an evolving source and varied effects across a wind farm's lifetime. Oceanography, 33(4), (2020): 82-95, https://doi.org/10.5670/oceanog.2020.408.Offshore wind farms are proliferating around the world, and their presence is expected to expand substantially within US waters. Wind farm lifetimes involve 40–50-year commitments, including site surveys, construction, operation, and eventual decommissioning. Because their areas often overlap with essential fisheries habitats, there is a need to understand, mitigate, and manage offshore wind farm impacts on fisheries and ecosystems. Activities during all phases of wind farm lifetimes produce underwater sound, a concern because high noise levels and/or persistent anthropogenic noise can impact marine life in many ways. Here, we review the current understanding of impacts of wind energy activities on fisheries resources, taking into account the varied noise conditions that occur from site survey to decommissioning. For certain portions of wind farm development, such as construction and operation, there is a small amount of available data that allows stakeholders to evaluate impacts for at least some taxa. Yet, we are data deficient for most species’ populations, life stages, and other phases as they relate to wind farm development. Thus, it is difficult to evaluate impacts with any certainty, underscoring the need for further studies to adequately address impacts of offshore wind farms on vulnerable and ecologically and economically important taxa.This work was partially funded by a US Bureau of Ocean Energy Management grant to Mooney and Stanley. N. Reneir illustrated several figures

    The Vincia Parton Shower

    Full text link
    We summarize recent developments in the VINCIA parton shower. After a brief review of the basics of the formalism, the extension of VINCIA to hadron collisions is sketched. We then turn to improvements of the efficiency of tree-level matching by making the shower history unique and by incorporating identified helicities. We conclude with an overview of matching to one-loop matrix elements.Comment: 6 pages, to appear in the proceedings of DIS 201

    DeepCare: A Deep Dynamic Memory Model for Predictive Medicine

    Full text link
    Personalized predictive medicine necessitates the modeling of patient illness and care processes, which inherently have long-term temporal dependencies. Healthcare observations, recorded in electronic medical records, are episodic and irregular in time. We introduce DeepCare, an end-to-end deep dynamic neural network that reads medical records, stores previous illness history, infers current illness states and predicts future medical outcomes. At the data level, DeepCare represents care episodes as vectors in space, models patient health state trajectories through explicit memory of historical records. Built on Long Short-Term Memory (LSTM), DeepCare introduces time parameterizations to handle irregular timed events by moderating the forgetting and consolidation of memory cells. DeepCare also incorporates medical interventions that change the course of illness and shape future medical risk. Moving up to the health state level, historical and present health states are then aggregated through multiscale temporal pooling, before passing through a neural network that estimates future outcomes. We demonstrate the efficacy of DeepCare for disease progression modeling, intervention recommendation, and future risk prediction. On two important cohorts with heavy social and economic burden -- diabetes and mental health -- the results show improved modeling and risk prediction accuracy.Comment: Accepted at JBI under the new name: "Predicting healthcare trajectories from medical records: A deep learning approach

    Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes

    Get PDF
    Resonance Raman scattering is used to determine the radial breathing mode (RBM) frequency (ωRBM) dependence on tube diameter (dt) for single-wall carbon nanotubes (SWNTs). We establish experimentally the ωRBM=227.0/dt as the fundamental relation for pristine SWNTs. All the other RBM values found in the literature can be explained by an upshift in frequency due mostly to van der Waals interaction between SWNTs and environment

    Time- and angle-resolved photoemission spectroscopy with optimized high-harmonic pulses using frequency-doubled Ti:Sapphire lasers

    Get PDF
    Time- and angle-resolved photoemission spectroscopy (trARPES) using femtosecond extreme ultraviolet high harmonics has recently emerged as a powerful tool for investigating ultrafast quasiparticle dynamics in correlated-electron materials. However, the full potential of this approach has not yet been achieved because, to date, high harmonics generated by 800 nm wavelength Ti:Sapphire lasers required a trade-off between photon flux, energy and time resolution. Photoemission spectroscopy requires a quasi-monochromatic output, but dispersive optical elements that select a single harmonic can significantly reduce the photon flux and time resolution. Here we show that 400 nm driven high harmonic extreme-ultraviolet trARPES is superior to using 800 nm laser drivers since it eliminates the need for any spectral selection, thereby increasing photon flux and energy resolution to < 150 meV while preserving excellent time resolution of about 30 fs. © 2014 The Authors

    Rights Myopia in Child Welfare

    Get PDF
    For decades, legal scholars have debated the proper balance of parents\u27 rights and children\u27s rights in the child welfare system. This Article argues that the debate mistakenly privileges rights. Neither parents\u27 rights nor children\u27s rights serve families well because, as implemented, a solely rights-based model of child welfare does not protect the interests of parents or children. Additionally, even if well-implemented, the model still would not serve parents or children because it obscures the important role of poverty in child abuse and neglect and fosters conflict rather than collaboration between the state and families. In lieu of a solely rights-based model, this Article proposes a problem-solving model for child welfare and explores one embodiment of such a model, family group conferencing. This Article concludes that a problem-solving model holds significant potential to address many of the profound theoretical and practical shortcomings of the current child welfare system

    Adding New Tasks to a Single Network with Weight Transformations using Binary Masks

    Full text link
    Visual recognition algorithms are required today to exhibit adaptive abilities. Given a deep model trained on a specific, given task, it would be highly desirable to be able to adapt incrementally to new tasks, preserving scalability as the number of new tasks increases, while at the same time avoiding catastrophic forgetting issues. Recent work has shown that masking the internal weights of a given original conv-net through learned binary variables is a promising strategy. We build upon this intuition and take into account more elaborated affine transformations of the convolutional weights that include learned binary masks. We show that with our generalization it is possible to achieve significantly higher levels of adaptation to new tasks, enabling the approach to compete with fine tuning strategies by requiring slightly more than 1 bit per network parameter per additional task. Experiments on two popular benchmarks showcase the power of our approach, that achieves the new state of the art on the Visual Decathlon Challenge

    Self-amplified photo-induced gap quenching in a correlated electron material.

    Get PDF
    Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains-on a microscopic level-the extremely fast response of this material to ultrafast optical excitation
    • …
    corecore