9 research outputs found

    Aurora kinase targeting in lung cancer reduces KRAS-induced transformation

    Get PDF
    Background: Activating mutations in KRAS are prevalent in lung cancer and have been causally linked to the oncogenic process. However, therapies targeted to oncogenic RAS have been ineffective to date and identification of KRAS targets that impinge on the oncogenic phenotype is warranted. Based on published studies showing that mitotic kinases Aurora A (AURKA) and B (AURKB) cooperate with oncogenic RAS to promote malignant transformation and that AURKA phosphorylates RAS effector pathway components, the aim of this study was to investigate whether AURKA and AURKB are KRAS targets in lung cancer and whether targeting these kinases might be therapeutically beneficial. Methods: In order to determine whether oncogenic KRAS induces Aurora kinase expression, we used qPCR and western blotting in three different lung cell-based models of gain- or loss-of-function of KRAS. In order to determine the functional role of these kinases in KRAS-induced transformation, we generated KRAS-positive A549 and H358 cells with stable and inducible shRNA-mediated knockdown of AURKA or AURKB and evaluated transformation in vitro and tumor growth in vivo. In order to validate AURKA and/or AURKB as therapeutically relevant KRAS targets in lung cancer, we treated A549 and H358 cells, as well as two different lung cell based models of gain-of-function of KRAS with a dual Aurora kinase inhibitor and performed functional in vitro assays. Results: We determined that KRAS positively regulates AURKA and AURKB expression. Furthermore, in KRAS-positive H358 and A549 cell lines, inducible knockdown of AURKA or AURKB, as well as treatment with a dual AURKA/AURKB inhibitor, decreased growth, viability, proliferation, transformation, and induced apoptosis in vitro. In addition, inducible shRNA-mediated knockdown of AURKA in A549 cells decreased tumor growth in vivo. More importantly, dual pharmacological inhibiton of AURKA and AURKB reduced growth, viability, transformation, and induced apoptosis in vitro in an oncogenic KRAS-dependent manner, indicating that Aurora kinase inhibition therapy can specifically target KRAS-transformed cells. Conclusions: Our results support our hypothesis that Aurora kinases are important KRAS targets in lung cancer and suggest Aurora kinase inhibition as a novel approach for KRAS-induced lung cancer therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0494-6) contains supplementary material, which is available to authorized users

    Human endogenous RNAs: Implications for the immunomodulation of Toll-like receptor 3

    No full text
    Toll-like receptors (TLRs), a family of mammalian receptors, are able to recognize nucleic acids. TLR3 recognizes double-stranded (ds)RNA, a product of the replication of certain viruses. Polyinosinic-polycytidylic acid, referred to as poly(I:C), an analog of viral dsRNA, interacts with TLR3 thereby eliciting immunoinflammatory responses characteristic of viral infection or down-regulating the expression of chemokine receptor CXCR4. It is known that dsRNA also directly activates interferon (IFN)-induced enzymes, such as the RNA-dependent protein kinase (PKR). In the present study, the mRNA expression of TLR3, CXCR4, IFN gamma and PKR was investigated in a culture of peripheral blood mononuclear cells (PBMCs) stimulated with poly(I:C) and endogenous RNA from human PBMCs. No cytotoxic effect on the cells or on the proliferation of CD3(+), CD4(+) and CD8(+) cells was observed. TLR3 expression in the PBMCs in the presence of poly(I:C) was up-regulated 9.5-fold, and TLR3 expression in the PBMCs treated with endogenous RNA was down-regulated 1.8-fold (p=0.002). The same trend was observed for IFN gamma where in the presence of poly(I:C) an 8.7-fold increase was noted and in the presence of endogenous RNA a 3.1-fold decrease was observed. In the culture activated with poly(1:C), mRNA expression of CXCR4 increased 8.0-fold and expression of PKR increased 33.0-fold. Expression of these genes decreased in the culture treated with endogenous RNA when compared to the culture without stimulus. Thus, high expression of mRNA for TLR3, IFN gamma, CXCR4 and PKR was observed in the presence of poly(I:C) and low expression was observed in the cells cultured with endogenous RNA. In conclusion, TLR3 may play major physiological roles that are not in the context of viral infection. It is possible that RNA released from cells could contain enough double-stranded structures to regulate cell activation. The involvement of endogenous RNA in endogenous gene expression and its implications in the regulation thereof, are still being studied, and will have significant implications in the future.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Londrina State University Graduate Administration (PROPPG-UEL)Londrina State University Graduate Administration (PROPPG-UEL

    Metagenomic insights into the plasma virome of Brazilian patients with prostate cancer

    No full text
    Growing evidence suggests that metavirome changes could be associated increased risk for malignant cell transformation. Considering Viruses have been proposed as factors for prostate cancer induction. The objective of this study was to examine the composition of the plasma metavirome of patients with prostate cancer. Blood samples were obtained from 49 male patients with primary prostate adenocarcinoma. Thirty blood donors were included as a control group. The obtained next-generation sequencing data were analyzed using a bioinformatic pipeline for virus metagenomics. Viral reads with higher abundance were assembled in contigs and analyzed taxonomically. Viral agents of interest were also confirmed by qPCR. Anelloviruses and the Human Pegivirus-1 (HPgV-1) were the most abundant component of plasma metavirome. Clinically important viruses like hepatitis C virus (HCV), cytomegalovirus and human adenovirus type C were also identified. In comparison, the blood donor virome was exclusively composed of torque teno virus types (TTV) types. The performed HPgV-1 and HCV phylogeny revealed that these viruses belong to commonly detected in Brazil genotypes. Our study sheds light on the plasma viral abundance in patients with prostatic cancer. The obtained viral diversity allowed us to separate the patients and controls, probably suggesting that malignant processes may influence virome composition. More complex and multiple approach investigations are necessary to examine the likely causal relationship between metavirome and its nvolvement in prostate cancer

    Potential association between <i>PSCA</i> rs2976395 functional variant and pancreatic cancer risk

    No full text
    Correlated regions of systemic interindividual variation (CoRSIV) represent a small proportion of the human genome showing DNA methylation patterns that are the same in all human tissues, are different among individuals, and are partially regulated by genetic variants in cis. In this study we aimed at investigating single-nucleotide polymorphisms (SNPs) within CoRSIVs and their involvement with pancreatic ductal adenocarcinoma (PDAC) risk. We analyzed 29,099 CoRSIV-SNPs and 133,615 CoRSIV-mQTLs in 14,394 cases and 247,022 controls of European and Asian descent. We observed that the A allele of the rs2976395 SNP was associated with increased PDAC risk in Europeans (p = 2.81 × 10 −5). This SNP lies in the prostate stem cell antigen gene and is in perfect linkage disequilibrium with a variant (rs2294008) that has been reported to be associated with risk of many other cancer types. The A allele is associated with the DNA methylation level of the gene according to the PanCan-meQTL database and with overexpression according to QTLbase. The expression of the gene has been observed to be deregulated in many tumors of the gastrointestinal tract including pancreatic cancer; however, functional studies are needed to elucidate the function relevance of the association.</p

    Identification of Recessively Inherited Genetic Variants Potentially Linked to Pancreatic Cancer Risk

    No full text
    Although 21 pancreatic cancer susceptibility loci have been identified in individuals of European ancestry through genome-wide association studies (GWASs), much of the heritability of pancreatic cancer risk remains unidentified. A recessive genetic model could be a powerful tool for identifying additional risk variants. To discover recessively inherited pancreatic cancer risk loci, we performed a re-analysis of the largest pancreatic cancer GWAS, the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4), including 8,769 cases and 7,055 controls of European ancestry. Six single nucleotide polymorphisms (SNPs) showed associations with pancreatic cancer risk according to a recessive model of inheritance. We replicated these variants in 3,212 cases and 3,470 controls collected from the PANcreatic Disease ReseArch (PANDoRA) consortium. The results of the meta-analyses confirmed that rs4626538 (7q32.2), rs7008921 (8p23.2) and rs147904962 (17q21.31) showed specific recessive effects (p&lt;10(-5)) compared with the additive effects (p&gt;10(-3)), although none of the six SNPs reached the conventional threshold for genome-wide significance (p &lt; 5x10(-8)). Additional bioinformatic analysis explored the functional annotations of the SNPs and indicated a possible relationship between rs36018702 and expression of the BCL2L11 and BUB1 genes, which are known to be involved in pancreatic biology. Our findings, while not conclusive, indicate the importance of considering non-additive genetic models when performing GWAS analysis. The SNPs associated with pancreatic cancer in this study could be used for further meta-analysis for recessive association of SNPs and pancreatic cancer risk and might be a useful addiction to improve the performance of polygenic risk scores
    corecore