35 research outputs found

    Galectin-9 plasma levels reflect adverse hematological and immunological features in acute dengue virus infection

    Get PDF
    Background: Dengue virus (DENV) infection remains a major public health burden worldwide. Soluble mediators may play a critical role in the pathogenesis of acute DENV infection. Galectin-9 (Gal-9) is a soluble β-galactoside-binding lectin, with multiple immunoregulatory and inflammatory properties. Objective: To investigate plasma Gal-9 levels as a biomarker for DENV infection. Study design: We enrolled 65 DENV infected patients during the 2010 epidemic in the Philippines and measured their plasma Gal-9 and cytokine/chemokine levels, DENV genotypes, and copy number during the critical and recovery phases of illness. Results: During the critical phase, Gal-9 levels were significantly higher in DENV infected patients compared to healthy or those with non-dengue febrile illness. The highest Gal-9 levels were observed in dengue hemorrhagic fever (DHF) patients (DHF: 2464. pg/ml; dengue fever patients (DF): 1407. pg/ml; non-dengue febrile illness: 616. pg/ml; healthy: 196. pg/ml). In the recovery phase, Gal-9 levels significantly declined from peak levels in DF and DHF patients. Gal-9 levels tracked viral load, and were associated with multiple cytokines and chemokines (IL-1α, IL-8, IP-10, and VEGF), including monocyte frequencies and hematologic variables of coagulation. Further discriminant analyses showed that eotaxin, Gal-9, IFN-α2, and MCP-1 could detect 92% of DHF and 79.3% of DF, specifically (P < 0.01). Conclusion: Gal-9 appears to track DENV inflammatory responses, and therefore, it could serve as an important novel biomarker of acute DENV infection and disease severity

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    AMS 14C Measurements of Dissolved Inorganic Carbon in Pore Waters from a Deep-Sea "Cold Seep" Giant Clam Community Off Hatsushima Island, Sagami Bay, Japan

    No full text
    We collected pore waters using an in situ pore water-squeezer for a submersible Shinkai 2000 at six depths beneath the sediment surface within a deep-sea "cold seep" giant clam community off Hatsushima Island, Sagami Bay, Japan. A box core sample was also collected ca. 4.5 km east of the community and pore waters were separated. Dissolved inorganic carbon (DIC) was extracted and purified in a vacuum line and 14C concentration was determined with a Tandetron accelerator mass spectrometer at Nagoya University after conversion to graphite targets using a batch Fe-catalytic hydrogen reduction method. Delta-14C values decreased with increasing depth to -938 per mil at the sulfate concentration minimum. This indicates that methane used for the active reduction of sulfate and formation of hydrogen sulfide, which is used by symbiotic chemoautotrophic bacteria in gills of the giant clams, is almost dead and is likely supplied from the deep. delta-14C values of DIC vary linearly with delta-13C values along a mixing line between that in the bottom water and that produced by the oxidation of dead methane. The delta-13C value of DIC oxidized from dead methane is estimated to be ca. -45 per mil.This material was digitized as part of a cooperative project between Radiocarbon and the University of Arizona Libraries.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    Modulation of synaptic transmission in hippocampal CA1 neurons by a novel neurotoxin (beta-pompilidotoxin) derived from wasp venom

    No full text
    We examined the effects of beta-pompilidotoxin (beta-PMTX), a neurotoxin derived from wasp venom. on synaptic transmission in the mammalian central nervous system (CNS). Using hippocampal slice preparations of rodents, we made both extracellular and intracellular recordings from the CA1 pyramidal neurons in response to stimulation of the Schaffer collateral/commissural fibers. Application of 5-10 muM beta-PMTX enhanced excitatory postsynaptic potentials (EPSPs) but suppressed the fast component of the inhibitory postsynaptic potentials (IPSPs). In the presence of 10 muM bicuculline, beta-PMTX potentiated EPSPs that were composed of both non-NMDA and NMDA receptor-mediated potentials. Potentiation of EPSPs was originated by repetitive firings of the prosynaptic axons, causing Summation of EPSPs. In the presence of 10 muM CNQX and 50 muM APV, beta-PMTX suppressed GABA(A) receptor-mediated fast IPSPs but retained GABA(B) receptor-mediated slow IPSPs. Our results suggest that beta-PMTX facilitates excitatory synaptic transmission by a presynaptic mechanism and that it causes overexcitation followed by block of the activity of some population of interneurons which regulate the activity of GABA(A) receptors. (C) 2001 Published by Elsevier B.V. Ireland Ltd and the Japan Neuroscience Society

    Frequent coexpression of MRP/GS-X pump and γ-glutamylcysteine synthetase mRNA in drug-resistant cells, untreated tumor cells, and normal mouse tissues

    No full text
    Expression of the multidrug-resistance protein gene MRP, which confers non-P-glycoproteinmediated multidrug resistance, has been found in many drug-resistant variants and tumor samples. Recent studies have demonstrated that MRP functions as an ATP-dependent transporter functionally related to the previously described glutathione-conjugate (GS-X) pump. We have shown recently that the MRP and γ-glutamylcysteine synthetase (γ-GCS) heavy subunit mRNA levels are coordinately overexpressed in cisplatin (CP)-resistant human leukemia cells (Ishikawa et al., J Biol Chem 271: 14981–14988, 1996) and frequently co-elevated in human colorectal tumors (Kuo et al., Cancer Res 56: 3642–3644, 1996). In the present study, we showed the coexpression patterns of thirteen additional human drug-resistant cell lines representing different tumor cell origins selected with different agents, except for one doxorubicin-selected line which demonstrated minor elevation in MRP mRNA with no detectable increase in γ-GCS mRNA, suggesting that the increase of MRP mRNA preceded the increase in γ-GCS mRNA. Furthermore, in seventeen randomly selected untreated tumor cell lines, the overall correlation coefficient between MRP and γ-GCS mRNA levels was 0.861. In normal mice, the correlation coefficient of mrp and γ-gcs mRNA was 0.662 in fourteen tissues (kidney and liver were not included) analyzed. Kidney and liver expressed low levels of mrp relative to γ-gcs; however, these two tissues expressed high levels of a functionally related mrp homologue, mrp2 (cMoat or cMrp), which may have compensated for the underexpressed mrp in maintaining the total GS-X pump activities. Altogether, these results demonstrated the frequent coexpression of these two genes in various cell settings
    corecore