222 research outputs found

    Excitation-assisted inelastic processes in trapped Bose-Einstein condensates

    Full text link
    We find that inelastic collisional processes in Bose-Einstein condensates induce local variations of the mean-field interparticle interaction and are accompanied by the creation/annihilation of elementary excitation. The physical picture is demonstrated for the case of three body recombination in a trapped condensate. For a high trap barrier the production of high energy trapped single particle excitations results in a strong increase of the loss rate of atoms from the condensate.Comment: 4 pages, no figure

    Dipolar collisions of polar molecules in the quantum regime

    Full text link
    Ultracold polar molecules offer the possibility of exploring quantum gases with interparticle interactions that are strong, long-range, and spatially anisotropic. This is in stark contrast to the dilute gases of ultracold atoms, which have isotropic and extremely short-range, or "contact", interactions. The large electric dipole moment of polar molecules can be tuned with an external electric field; this provides unique opportunities such as control of ultracold chemical reactions, quantum information processing, and the realization of novel quantum many-body systems. In spite of intense experimental efforts aimed at observing the influence of dipoles on ultracold molecules, only recently have sufficiently high densities been achieved. Here, we report the observation of dipolar collisions in an ultracold molecular gas prepared close to quantum degeneracy. For modest values of an applied electric field, we observe a dramatic increase in the loss rate of fermionic KRb molecules due to ultrcold chemical reactions. We find that the loss rate has a steep power-law dependence on the induced electric dipole moment, and we show that this dependence can be understood with a relatively simple model based on quantum threshold laws for scattering of fermionic polar molecules. We directly observe the spatial anisotropy of the dipolar interaction as manifested in measurements of the thermodynamics of the dipolar gas. These results demonstrate how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold polar molecule gas. The large loss rates in an applied electric field suggest that creating a long-lived ensemble of ultracold polar molecules may require confinement in a two-dimensional trap geometry to suppress the influence of the attractive dipolar interactions

    Policy Brief: UNSCR 1325: The Challenges of Framing Women’s Rights as a Security Matter

    Get PDF
    While UN Security Council Resolution (UNSCR) 1325 has certainly increased awareness among international actors about women’s and gender issues in armed conflict, opened new spaces for dialogue and partnerships from global to local levels, and even created opportunities for new resources for women’s rights, successes remain limited and notably inconsistent. To understand some of these shortcomings and think creatively about how to move the women, peace and security agenda forward, it is essential to understand the conceptual assumptions underscoring UNSCR 1325

    Dense Antihydrogen: Its Production and Storage to Envision Antimatter Propulsion

    Full text link
    We discuss the possibility that dense antihydrogen could provide a path towards a mechanism for a deep space propulsion system. We concentrate at first, as an example, on Bose-Einstein Condensate (BEC) antihydrogen. In a Bose-Einstein Condensate, matter (or antimatter) is in a coherent state analogous to photons in a laser beam, and individual atoms lose their independent identity. This allows many atoms to be stored in a small volume. In the context of recent advances in producing and controlling BECs, as well as in making antihydrogen, this could potentially provide a revolutionary path towards the efficient storage of large quantities of antimatter, perhaps eventually as a cluster or solid.Comment: 12 pages, 3 figure

    Exciting, Cooling And Vortex Trapping In A Bose-Condensed Gas

    Full text link
    A straight forward numerical technique, based on the Gross-Pitaevskii equation, is used to generate a self-consistent description of thermally-excited states of a dilute boson gas. The process of evaporative cooling is then modelled by following the time evolution of the system using the same equation. It is shown that the subsequent rethermalisation of the thermally-excited state produces a cooler coherent condensate. Other results presented show that trapping vortex states with the ground state may be possible in a two-dimensional experimental environment.Comment: 9 pages, 7 figures. It's worth the wait! To be published in Physical Review A, 1st February 199

    Cold Collision Frequency Shift of the 1S-2S Transition in Hydrogen

    Get PDF
    We have observed the cold collision frequency shift of the 1S-2S transition in trapped spin-polarized atomic hydrogen. We find Δν1S2S=3.8(8)×1010nHzcm3\Delta \nu_{1S-2S} = -3.8(8)\times 10^{-10} n Hz cm^3, where nn is the sample density. From this we derive the 1S-2S s-wave triplet scattering length, a1S2S=1.4(3)a_{1S-2S}=-1.4(3) nm, which is in fair agreement with a recent calculation. The shift provides a valuable probe of the distribution of densities in a trapped sample.Comment: Accepted for publication in PRL, 9 pages, 4 PostScript figures, ReVTeX. Updated connection of our measurement to theoretical wor

    Near Resonant Spatial Images of Confined Bose-Einstein Condensates in the '4D' Magnetic Bottle

    Get PDF
    We present quantitative measurements of the spatial density profile of Bose-Einstein condensates of sodium atoms confined in a new '4D' magnetic bottle. The condensates are imaged in transmission with near resonant laser light. We demonstrate that the Thomas-Fermi surface of a condensate can be determined to better than 1%. More generally, we obtain excellent agreement with mean-field theory. We conclude that precision measurements of atomic scattering lengths and interactions between phase separated cold atoms in a harmonic trap can be measured with high precision using this method.Comment: 15 pages, 3 figures. Submitted 10/30/97, accepted for publication in Phys. Rev. A Rapid Com

    Hidden spin-current conservation in 2d Fermi liquids

    Get PDF
    We report the existence of regimes of the two dimensional Fermi liquid that show unusual conservation of the spin current and may be tuned by varying some parameter like the density of fermions. We show that for reasonable models of the effective interaction the spin current may be conserved in general in 2d, not only for a particular regime. Low temperature spin waves propagate distinctively in these regimes and entirely new ``spin-acoustic'' modes are predicted for scattering-dominated temperature ranges. These new high-temperature propagating spin waves provide a clear signature for the experimental search of such regimes.Comment: 4 pages, no figures, revised version, accepted for pub. in the PR
    corecore