607 research outputs found

    A two-step parallel plate chamber with a resistive germanium anode and a two dimensional readout for the detection of minimum ionizing particles

    Get PDF
    Abstract A parallel plate avalanche chamber specially suited for the high resolution detection of minimum ionizing particles (m.i.p.) is presented. The anode is made of a thin germanium layer with a sheet resistivity > 1 M Ω/p[ while the cathode is made of a nickel mesh having 600 line pairs/in. A chess board of pads placed behind the anode plane is used to obtain the positional information. A 100% detection efficiency, a 40 ns (fwhm) time resolution and a spatial resolution better than 140 μm (fwhm) for both coordinates have been measured

    Greenhouse gas emissions in the agricultural phase of wine production in the Maremma rural district (Tuscany, Italy).

    Get PDF
    In recent years, there has been an increasing interest from retailers, industries and environmental associations in estimating the life cycle of greenhouse gases emitted in the atmosphere from everyday products and services, also known as carbon footprint (CF). Life cycle assessment (LCA) is the most common methodology used to evaluate the environmental impact of a product. This approach was largely used in many industrial sectors and was also recently applied to quantify the environmental impact of the agri-food chain. Within agri-food products, wine is one of the most analysed, both for its importance in economic production and in the world distribution market. The present study is a part of the Carbon Label Project carried out in the wine production chain in the Maremma rural district (Tuscany, Italy). The project assessed the greenhouse gas (GHG) emissions from wine production for labelling purposes. Here, we evaluated the environmental performances of four high quality wines for carbon labelling. The international standards ISO 14040, ISO 14044, and the Product Category Rules (PCR) Wine from Fresh Grapes (except sparkling wine) and Grape Must for the Environmental Product Declaration (EPD) certification, specifically for Climate Declaration, were used in order to carry out our analyses. The functional unit (FU) used here was one 0.75 L bottle of wine. The system boundaries were set from the vineyard planting to the distribution and waste disposal. The global warming potential (GWP) of four investigated wines was found to lie between 0.6 and 1.3 kg CO2-eq./bottle, showing a value comparable with literature. With all the four wines analysed, the agricultural phase covered, on average, 22% of the total GWP/bottle, while the main impact was in the production of the glass bottle. The results showed that the vineyard-planting phase has a significant impact on the wine CF, thus it has to be considered in the life cycle, while in literature it is frequently omitted. On the contrary, the pre-production phase did not present a relevant impact. The use of nitrogen fertilisers, the grapes’ yield and N2O emissions were the parameters that mostly affected the carbon footprint in the agricultural phase, as underlined by the sensitivity analysis

    The micro-gap chamber

    Get PDF
    Abstract The micro-gap chamber (MGC), a new type of position sensitive proportional gas counter, is introduced. The device is built using microelectronics technology. In this detector the separation between the electrodes collecting the avalanche charge (the anode-cathode gap) is only a few microns. The time it takes to collect the positive ions is therefore very short ( ≈ 10 ns). The speed of the device now equals that of solid state detectors but it is more than three orders of magnitude higher than in standard proportional counters and one order of magnitude higher than in the recently introduced microstrip gas chamber (MSGC). As a result, the rate capability is extremely high (> 9×10 6 c /mm 2 s). The amplifying electric field around the thin anode microstrip extends over a small volume but is very intense (270 kV/mm). It provides a gas gain of 2.5 × 10 3 at 400 V with 14% (FWHM) energy resolution at 5.4 keV. The anode pitch is 100 μm and the readout is intrinsically two-dimensional. Because there is practically no insulating material in view, charging was not observed even at the highest rate. This device seems very well suited for instrumentation of the tracking system at the new hadron colliders (LHC/SSC) as well as in many other fields of research

    A novel type of parallel plate chamber with resistive germanium anode and a two-dimensional readout

    Get PDF
    Abstract A parallel plate counter with a resistive anode and a two-dimensional readout is presented. The anode is made of a thin germanium layer with a sheet resistivity ⩾ 1 M ω /square and the cathode is made of aluminized mylar 5 μm thick. The anode is transparent to the fast impulse due to the collection of the multiplication electrons. A chessboard of "pads" placed behind the anode plane is used to obtain the positional information. The detector and the readout system are physically and logically separated. An overall spatial resolution of 70 μm (rms) for both coordinates has been measured

    A microstrip gas avalanche chamber with two-dimensional readout

    Get PDF
    Abstract A microstrip gas avalanche chamber with a 200 μm anode pitch has been built and successfully tested in our laboratory. A gas gain of 104 and an energy resolution of 18% (FWHM) at 6 keV have been measured using a gas mixture of argon-CO2 at atmospheric pressure. A preliminary measurement of the positional sensitivity indicates that a spatial resolution of 50 μm can be obtained

    Influences of postharvest storage and processing techniques on antioxidant and nutraceutical properties of rubus idaeus l.: A mini-review

    Get PDF
    The growth of agricultural mechanization has promoted an increase in raspberry production, and for this reason, the best postharvest storage and processing techniques capable of maintaining the health beneficial properties of these perishable berry fruits have been widely studied. Indeed, raspberries are a rich source of bioactive chemical compounds (e.g., ellagitannins, anthocyanins, and ascorbic acid), but these can be altered by postharvest storage and processing techniques before consumption. Although there are clear differences in storage times and techniques, the content of bioactive chemical compounds is relatively stable with some minor changes in ascorbic acid or anthocyanin content during cold (5â—¦C) or frozen storage. In the literature, processing techniques such as juicing or drying have negatively affected the content of bioactive chemical compounds. Among drying techniques, hot air (oven) drying is the process that alters the content of bioactive chemical compounds the most. For this reason, new drying technologies such as microwave and heat pumps have been developed. These novel techniques are more successful in retaining bioactive chemical compounds with respect to conventional hot air drying. This mini-review surveys recent literature concerning the effects of postharvest storage and processing techniques on raspberry bioactive chemical compound content

    Reading a GEM with a VLSI pixel ASIC used as a direct charge collecting anode

    Get PDF
    In MicroPattern Gas Detectors (MPGD) when the pixel size is below 100 micron and the number of pixels is large (above 1000) it is virtually impossible to use the conventional PCB read-out approach to bring the signal charge from the individual pixel to the external electronics chain. For this reason a custom CMOS array of 2101 active pixels with 80 micron pitch, directly used as the charge collecting anode of a GEM amplifying structure, has been developed and built. Each charge collecting pad, hexagonally shaped, realized using the top metal layer of a deep submicron VLSI technology is individually connected to a full electronics chain (pre-amplifier, shaping-amplifier, sample and hold, multiplexer) which is built immediately below it by using the remaining five active layers. The GEM and the drift electrode window are assembled directly over the chip so the ASIC itself becomes the pixelized anode of a MicroPattern Gas Detector. With this approach, for the first time, gas detectors have reached the level of integration and resolution typical of solid state pixel detectors. Results from the first tests of this new read-out concept are presented. An Astronomical X-Ray Polarimetry application is also discussed.Comment: 11 pages, 14 figures, presented at the Xth Vienna Conference on Instrumentation (Vienna, February 16-21 2004). For a higher resolution paper contact [email protected]

    Substrate-less, spark-free micro-strip gas counters

    Get PDF
    Abstract We review recent work involving micro-strip gas counters with "advanced passivated" cathode strips. We present results from tests of a new variation of the MSGC, the planar micro-gap counter (PMGC), with very small ( ∼10 μ m) anode–cathode gap. Gains of up to 3×10 4 were achieved and gain variations due to charging effects were less than 10% using an ordinary (uncoated) boro-silicate glass substrate. The PMGC showed no reduction in gain when subjected to an X-ray flux of 4×10 5 Hz/mm 2 and survived exposure to alpha particles equivalent to 75 days' running at LHC with no signs of strip damage
    • …
    corecore