95 research outputs found

    ENDOCRINE AND AMINO-ACID REGULATION OF LIVER MACROAUTOPHAGY AND PROTEOLYTIC FUNCTION

    Get PDF
    Endocrine and amino acid regulation of liver macroautophagy and proteolytic function. Am, J. Physiol. 266 (Gastrointest. Liver Physiol. 29): G118-G122, 1994.-Regulation of liver macroautophagy and protein degradation by hormones and direct regulatory amino acids were studied in male 2-mo-old Sprague-Dawley albino rats with the use of the antilipolytic agent 3,5'-dimethylpyrazole (DMP; 12 mg/kg body wt ip) as a stimulatory agent. Injection of DMP decreased glutamine plasma levels and glutamine release from the perfused liver. Autophagic vacuoles were observed in the pericanalicular area of liver cells after 30 min. Levels and release of other regulatory amino acids did not exhibit any significant decrease but subsequently increased. Intraperitoneal administration of glutamine inhibited the proteolytic response. In conclusion, these studies demonstrate that in vivo induction and control of liver macroautophagy and protein degradation by the physiological mechanism (i.e., by shortage of nutrients) involve unbalanced and asynchronous changes in the levels of selected direct regulatory amino acids (i.e., a decrease in glutamine and a subsequent increase in leucine and tyrosine levels)

    A role for autophagy in β-cell life and death.

    Get PDF
    Autophagy is a vacuolar, self-digesting mechanism responsible for the removal of organelles and defined regions of the cytoplams. This process has, in general, a beneficial role for the cell, since it regulates the turnover of aged proteins and eliminates damaged structures. However, cells that undergo altered autophagy may be triggered to die in a non-apoptotic manner. As a matter of fact, in recent years it has become clear that dysregulated autophagy may be implicated in several disorders, such as cancer, neurodegenerative diseases and hepatic encephalopathy. We have recently shown that β-cells of type 2 diabetic subjects show signs of autophagy associated death, which may contribute to the overall loss of β-cell mass in type 2 diabetes. In addition, studies with cell lines and rodent models have demonstrated the importance of autophagy in β-cell function and survival. Altogether, the available evidence supports the view that autophagy is implicated in β-cell pathophysiology, and suggests that addressing the molecular mechanisms involved in autophagic regulation might provide clues for preventing or treating β-cell damage in diabetes

    PRIMA-1 induces autophagy in cancer cells carrying mutant or wild type p53.

    Get PDF
    PRIMA-1 is a chemical compound identified as a growth suppressor of tumor cells expressing mutant p53. We previously found that in the MDA-MB-231 cell line expressing high level of the mutant p53-R280K protein, PRIMA-1 induced p53 ubiquitination and degradation associated to cell death. In this study, we investigated the ability of PRIMA-1 to induce autophagy in cancer cells. In MDA-MB-231 and HCT116 cells, expressing mutant or wild type p53, respectively, autophagy occurred following exposure to PRIMA-1, as shown by acridine orange staining, anti-LC3 immunofluorescence and immunoblots, as well as by electron microscopy. Autophagy was triggered also in the derivative cell lines knocked-down for p53, although to a different extent than in the parental cells expressing mutant or wild type p53. In particular, while wild type p53 limited PRIMA-1 induced autophagy, mutant p53 conversely promoted autophagy, thus sustaining cell viability following PRIMA-1 treatment. Therefore, the autophagic potential of PRIMA-1, besides being cell context dependent, could be modulated in a different way by the presence of wild type or mutant p53. Furthermore, since both cell lines lacking p53 were more sensitive to the cytotoxic effect of PRIMA-1 than the parental ones, our findings suggest that a deregulated autophagy may favor cell death induced by this drug

    Membranous Nephropathy Associated with Eosinophilic Gastroenteritis: First Report

    Get PDF
    Membranous nephropathy represents the most common cause of nephrotic syndrome in adult patients. In 85% of cases the disease is classified as idiopathic membranous nephropathy, and in the remainder 15 % as secondary membranous nephropathy (systemic lupus erythematosus, infections, drugs, tumors, inorganics salts). Treatment of secondary membranous nephropathy is guided by therapy of the original disease, or by elimination of the responsible cause. Eosinophilic gastroenteritis is a rare uncommon disease of unknown origin affecting the gastrointestinal apparatus and is characterized by diffuse eosinophilic infiltration of the gastro-enteric wall. Any segment of gastrointestinal tract can be interested, but the stomach results to be the most commonly affected organ, followed by the small intestine and the colon. The diagnosis is based on the presence of gastrointestinal symptoms, documented eosinophilic gut infiltration and the exclusion of intestinal parasites or extraintestinal disease. To date there are no randomized prospective therapeutic trials. The mainstay of treatment is represented by use of corticosteroids (with 90% of remission rate in some reports). We describe for the first time the case of a 43-year-old man affected by eosinophilic gastroenteritis who developed a nephrotic syndrome due to membranous nephropathy after he voluntarily stopped the steroidal oral therapy. Reintroduction of corticosteroid treatment led to the complete remission of the nephrotic syndrome within 6 months treatment

    Histopathology and ex vivo insulin secretion of pancreatic islets in gestational diabetes: A case report

    Get PDF
    Gestational diabetes (GD) results from insufficient endogenous insulin supply. No information is available on features of islet cells in human GD. Herein, we describe several properties of islets from a woman with GD. Immunohistochemical stainings and EM analyses were performed on pancreatic samples. Islet isolation was achieved by enzymatic dissociation and density gradient centrifugation. Ex vivo insulin secretion was studied in response to fuel secretagogues. Control islets were obtained from matched non-pregnant, non-diabetic women. Total insulin positive area was lower in GD, mainly due to the presence of smaller islets. β-cell apoptosis and the presence of Ki67 positive islet cells were similar in GD and controls, whereas the amount of insulin positive cells in or close to the ducts was decreased in GD. Ex vivo insulin secretion did not differ between GD and non-pregnant, non-diabetic islets. These findings suggest that in this case of human GD there might mainly be a defect of β-cell amount, not due to increased apoptosis, but possibly to insufficient regeneration

    Co-localization of acinar markers and insulin in pancreatic cells of subjects with type 2 diabetes

    Get PDF
    To search for clues suggesting that beta cells may generate by transdifferentiation in humans, we assessed the presence of cells double positive for exocrine (amylase, carboxypeptidase A) and endocrine (insulin) markers in the pancreas of non-diabetic individuals (ND) and patients with type 2 diabetes (T2D). Samples from twelve ND and twelve matched T2D multiorgan donors were studied by electron microscopy, including amylase and insulin immunogold labeling; carboxypeptidase A immunofluorescence light microscopy assessment was also performed. In the pancreas from four T2D donors, cells containing both zymogen-like and insulin-like granules were observed, scattered in the exocrine compartment. Nature of granules was confirmed by immunogold labeling for amylase and insulin. Double positive cells ranged from 0.82 to 1.74 per mm2, corresponding to 0.26±0.045% of the counted exocrine cells. Intriguingly, cells of the innate immune systems (mast cells and/or macrophages) were adjacent to 33.3±13.6% of these hybrid cells. No cells showing co-localization of amylase and insulin were found in ND samples by electron microscopy. Similarly, cells containing both carboxypeptidase A and insulin were more frequently observed in the diabetic pancreata. These results demonstrate more abundant presence of cells containing both acinar markers and insulin in the pancreas of T2D subjects, which suggests possible conversion from one cellular type to the other and specific association with the diseased condition

    Starvation promotes autophagy-associated maturation of the ovary in the giant freshwater prawn, Macrobrachium rosenbergii

    Get PDF
    Limitation of food availability (starvation) is known to influence the reproductive ability of animals. Autophagy is a lysosomal driven degradation process that protects the cell under metabolic stress conditions, such as during nutrient shortage. Whether, and how starvation-induced autophagy impacts on the maturation and function of reproductive organs in animals are still open questions. In this study, we have investigated the effects of starvation on histological and cellular changes that may be associated with autophagy in the ovary of the giant freshwater prawn, Macrobachium rosenbergii. To this end, the female prawns were daily fed (controls) or unfed (starvation condition) for up to 12 days, and the ovary tissue was analyzed at different time-points. Starvation triggered ovarian maturation, and concomitantly increased the expression of autophagy markers in vitellogenic oocytes. The immunoreactivities for autophagy markers, including Beclin1, LC3-II, and Lamp1, were enhanced in the late oocytes within the mature ovaries, especially at the vitellogenic stages. These markers co-localized with vitellin in the yolk granules within the oocytes, suggesting that autophagy induced by starvation could drive vitellin utilization, thus promoting ovarian maturation

    DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients

    Get PDF
    The first genome-scale DNA methylation study on pancreatic islets from type 2 diabetic patients identifies disease-associated DNA methylation pattern that translate into aberrant gene expression in novel factors relevant for β-cell function and survival

    The pancreatic beta cells in human type 2 diabetes

    No full text
    Bell-cell (beta-cell) impairment is central to the development and progression of human diabetes, as a result of the combined effects of genetic and acquired factors. Reduced islet number and/or reduced beta cells amount in the pancreas of individuals with Type 2 diabetes have been consistently reported. This is mainly due to increased beta cell death, not adequately compensated for by regeneration. In addition, several quantitative and/or qualitative defects of insulin secretion have been observed in Type 2 diabetes, both in vivo and ex vivo with isolated islets. All this is associated with modifications of islet cell gene and protein expression. With the identification of several susceptible Type 2 diabetes loci, the role of genotype in affecting beta-cell function and survival has been addressed in a few studies and the relationships between genotype and beta-cell phenotype investigated. Among acquired factors, the importance of metabolic insults (in particular glucotoxicity and lipotoxicity) in the natural history of beta-cell damage has been widely underlined. Continuous improvements in our knowledge of the beta cells in human Type 2 diabetes will lead to more targeted and effective strategies for the prevention and treatment of the disease
    corecore