26,489 research outputs found
Curved Graphene Nanoribbons: Structure and Dynamics of Carbon Nanobelts
Carbon nanoribbons (CNRs) are graphene (planar) structures with large aspect
ratio. Carbon nanobelts (CNBs) are small graphene nanoribbons rolled up into
spiral-like structures, i. e., carbon nanoscrolls (CNSs) with large aspect
ratio. In this work we investigated the energetics and dynamical aspects of
CNBs formed from rolling up CNRs. We have carried out molecular dynamics
simulations using reactive empirical bond-order potentials. Our results show
that similarly to CNSs, CNBs formation is dominated by two major energy
contribution, the increase in the elastic energy due to the bending of the
initial planar configuration (decreasing structural stability) and the
energetic gain due to van der Waals interactions of the overlapping surface of
the rolled layers (increasing structural stability). Beyond a critical diameter
value these scrolled structures can be even more stable (in terms of energy)
than their equivalent planar configurations. In contrast to CNSs that require
energy assisted processes (sonication, chemical reactions, etc.) to be formed,
CNBs can be spontaneously formed from low temperature driven processes. Long
CNBs (length of 30.0 nm) tend to exhibit self-folded racket-like
conformations with formation dynamics very similar to the one observed for long
carbon nanotubes. Shorter CNBs will be more likely to form perfect scrolled
structures. Possible synthetic routes to fabricate CNBs from graphene membranes
are also addressed
String Evolution with Friction
We study the effects of friction on the scaling evolution of string networks
in condensed matter and cosmological contexts. We derive a generalized
`one-scale' model with the string correlation length and velocity as
dynamical variables. In non-relativistic systems, we obtain a well-known
law, showing that loop production is important. For
electroweak cosmic strings, we show transient damped epoch scaling with
(or, in the matter era, ). A low initial
density implies an earlier period with . For GUT strings, the
approach to linear scaling is faster than previously estimated.Comment: 8 pages, uuencoded gziped .ps file. Paper submitted to Phys. Rev.
Let
Polarized currents and spatial separation of Kondo state: NRG study of spin-orbital effect in a double QD
A double quantum dot device, connected to two channels that only see each
other through interdot Coulomb repulsion, is analyzed using the numerical
renormalization group technique. By using a two-impurity Anderson model, and
parameter values obtained from experiment [S. Amasha {\it et al.}, Phys. Rev.
Lett. {\bf 110}, 046604 (2013)], it is shown that, by applying a moderate
magnetic field, and adjusting the gate potential of each quantum dot, opposing
spin polarizations are created in each channel. Furthermore, through a well
defined change in the gate potentials, the polarizations can be reversed. This
polarization effect is clearly associated to a spin-orbital Kondo state having
a Kondo peak that originates from spatially separated parts of the device. This
fact opens the exciting possibility of experimentally probing the internal
structure of an SU(2) Kondo state.Comment: 4+ pages; 4 figures; supplemental material (1 page, 2 figures
Práticas agrícolas relacionadas à calagem do solo.
bitstream/item/65417/1/COT-47-Praticas-agricolas-relacionadas.pd
Caprinocultura brasileira: as evidências do censo agropecuário 2006.
bitstream/item/48459/1/Midia-Caprinocultura-brasileira.pd
- …