849 research outputs found

    Josephson scanning tunneling microscopy

    Full text link
    We propose a set of scanning tunneling microscopy experiments in which the surface of superconductor is scanned by a superconducting tip. Potential capabilities of such experimental setup are discussed. Most important anticipated results of such an experiment include the position-resolved measurement of the superconducting order parameter and the possibility to determine the nature of the secondary component of the order parameter at the surface. The theoretical description based on the tunneling Hamiltonian formalism is presented.Comment: 6 pages, 7 figures, submitted to Phys. Rev.

    First-Principles Study for the Anisotropy of Iron-based Superconductors toward Power and Device Applications

    Full text link
    Performing the first-principles calculations, we investigate the anisotropy in the superconducting state of iron-based superconductors to gain an insight into their potential applications. The anisotropy ratio γλ\gamma_\lambda of the c-axis penetration depth to the ab-plane one is relatively small in BaFe2As2 and LiFeAs, i.e., γλ∼3\gamma_\lambda \sim 3, indicating that the transport applications are promising in these superconductors. On the other hand, in those having perovskite type blocking layers such as Sr2ScFePO3 we find a very large value, γλ∼200\gamma_\lambda \sim 200, comparable to that in strongly anisotropic high-Tc cuprate Bi2Sr2CaCu2O{8-\delta}. Thus, the intrinsic Josephson junction stacks are expected to be formed along the c-axis, and novel Josephson effects due to the multi-gap nature are also suggested in these superconductors.Comment: 5 pages, 4 figure

    Renormalization group approach to layered superconductors

    Full text link
    A renormalization group theory for a system consisting of coupled superconducting layers as a model for typical high-temperature superconducters is developed. In a first step the electromagnetic interaction over infinitely many layers is taken into account, but the Josephson coupling is neglected. In this case the corrections to two-dimensional behavior due to the presence of the other layers are very small. Next, renormalization group equations for a layered system with very strong Josephson coupling are derived, taking into account only the smallest possible Josephson vortex loops. The applicability of these two limiting cases to typical high-temperature superconductors is discussed. Finally, it is argued that the original renormalization group approach by Kosterlitz is not applicable to a layered system with intermediate Josephson coupling.Comment: RevTeX, 15 pages, 4 figures can be obtained from the author by conventional mail; accepted for publication in Phys. Rev.

    Systematics of c-axis Phonons in the Thallium and Bismuth Based Cuprate Superconductors

    Get PDF
    We present grazing incidence reflectivity measurements in the far infrared region at temperatures above and below Tc for a series of thallium (Tl2Ba2CuO6, Tl2Ba2CaCu2O8) and bismuth (Bi2Sr2CuO6, Bi2Sr2CaCu2O8, and Bi(2-x)Pb(x)Sr2CaCu2O8) based cuprate superconductors. From the spectra, which are dominated by the c-axis phonons, longitudinal frequencies (LO) are directly obtained. The reflectivity curves are well fitted by a series of Lorentz oscillators. In this way the transverse (TO) phonon frequencies were accurately determined. On the basis of the comparative study of the Bi and Tl based cuprates with different number of CuO2 layers per unit cell, we suggest modifications of the assignment of the main oxygen modes. We compare the LO frequencies in Bi2Sr2CaCu2O8 and Tl2Ba2Ca2Cu3O10 obtained from intrinsic Josephson junction characteristics with our measurements, and explain the discrepancy in LO frequencies obtained by the two different methods.Comment: 8 pages Revtex, 6 eps figures, 3 tables, to appear in Phys. Rev.

    Evolution of the resistivity anisotropy in Bi_{2}Sr_{2-x}La_{x}CuO_{6+\delta} single crystals for a wide range of hole doping

    Full text link
    To elucidate how the temperature dependence of the resistivity anisotropy of the cuprate superconductors changes with hole doping, both the in-plane and the out-of-plane resistivities (\rho_{ab} and \rho_{c}) are measured in a series of high-quality Bi_{2}Sr_{2-x}La_{x}CuO_{6+\delta} (BSLCO) single crystals for a wide range of x (x = 0.23 - 1.02), which corresponds to the hole doping per Cu, p, of 0.03 - 0.18. The anisotropy ratio, \rho_{c}/\rho_{ab}, shows a systematic increase with decreasing p at moderate temperatures, except for the most underdoped composition where the localization effect enhances \rho_{ab} and thus lowers \rho_{c}/\rho_{ab}. The exact p dependence of \rho_{c}/\rho_{ab} at a fixed temperature is found to be quite peculiar, which is discussed to be due to the effect of the pseudogap that causes \rho_{c}/\rho_{ab} to be increasingly more enhanced as p is reduced. The pseudogap also causes a rapid growth of \rho_{c}/\rho_{ab} with decreasing temperature, and, as a result, the \rho_{c}/\rho_{ab} value almost reaches 10^6 in underdoped samples just above T_c. Furthermore, it is found that the temperature dependence of \rho_{c} of underdoped samples show two distinct temperature regions in the pseudogap phase, which suggests that the divergence of \rho_{c} below the pseudogap temperature is governed by two different mechanisms.Comment: 10 pages, 10 figures, revised version. Discussions are expanded with a new analysis of the T-dependence of \rho_{c} and the resulting new phase diagra

    Prolonged Mechanical Ventilation Induces Cell Cycle Arrest in Newborn Rat Lung

    Get PDF
    Rationale: The molecular mechanism(s) by which mechanical ventilation disrupts alveolar development, a hallmark of bronchopulmonary dysplasia, is unknown. Objective: To determine the effect of 24 h of mechanical ventilation on lung cell cycle regulators, cell proliferation and alveolar formation in newborn rats. Methods: Seven-day old rats were ventilated with room air for 8, 12 and 24 h using relatively moderate tidal volumes (8.5 mL.kg-1). Measurement and Main Results: Ventilation for 24 h (h) decreased the number of elastin-positive secondary crests and increased the mean linear intercept, indicating arrest of alveolar development. Proliferation (assessed by BrdU incorporation) was halved after 12 h of ventilation and completely arrested after 24 h. Cyclin D1 and E1 mRNA and protein levels were decreased after 8-24 h of ventilation, while that of p27Kip1 was significantly increased. Mechanical ventilation for 24 h also increased levels of p57Kip2, decreased that of p16INK4a, while the levels of p21Waf/Cip1 and p15INK4b were unchanged. Increased p27Ki

    Control of star formation by supersonic turbulence

    Full text link
    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28 figures, in pres

    A Novel Task for the Investigation of Action Acquisition

    Get PDF
    We present a behavioural task designed for the investigation of how novel instrumental actions are discovered and learnt. The task consists of free movement with a manipulandum, during which the full range of possible movements can be explored by the participant and recorded. A subset of these movements, the ‘target’, is set to trigger a reinforcing signal. The task is to discover what movements of the manipulandum evoke the reinforcement signal. Targets can be defined in spatial, temporal, or kinematic terms, can be a combination of these aspects, or can represent the concatenation of actions into a larger gesture. The task allows the study of how the specific elements of behaviour which cause the reinforcing signal are identified, refined and stored by the participant. The task provides a paradigm where the exploratory motive drives learning and as such we view it as in the tradition of Thorndike [1]. Most importantly it allows for repeated measures, since when a novel action is acquired the criterion for triggering reinforcement can be changed requiring a new action to be discovered. Here, we present data using both humans and rats as subjects, showing that our task is easily scalable in difficulty, adaptable across species, and produces a rich set of behavioural measures offering new and valuable insight into the action learning process

    Constitutively active Lyn kinase causes a cutaneous small vessel vasculitis and liver fibrosis syndrome

    Get PDF
    Neutrophilic inflammation is a hallmark of many monogenic autoinflammatory diseases; pathomechanisms that regulate extravasation of damaging immune cells into surrounding tissues are poorly understood. Here we identified three unrelated boys with perinatal-onset of neutrophilic cutaneous small vessel vasculitis and systemic inflammation. Two patients developed liver fibrosis in their first year of life. Next-generation sequencing identified two de novo truncating variants in the Src-family tyrosine kinase, LYN, p.Y508*, p.Q507* and a de novo missense variant, p.Y508F, that result in constitutive activation of Lyn kinase. Functional studies revealed increased expression of ICAM-1 on induced patient-derived endothelial cells (iECs) and of β2-integrins on patient neutrophils that increase neutrophil adhesion and vascular transendothelial migration (TEM). Treatment with TNF inhibition improved systemic inflammation; and liver fibrosis resolved on treatment with the Src kinase inhibitor dasatinib. Our findings reveal a critical role for Lyn kinase in modulating inflammatory signals, regulating microvascular permeability and neutrophil recruitment, and in promoting hepatic fibrosis
    • …
    corecore