110,075 research outputs found

    Amplitudes and Resonances from an Energy-Dependent Analysis of pbar+p -> pi+pi

    Full text link
    The amplitudes at a series of discrete energies obtained from a previuos analysis of pbar+p -> pi+pi have been used as input to a global energy- dependent analysis of data in the momentum range 360 - 1550 MeV/c. The results confirm the previous analysis and yield refined values for meson resonance parameters in this energy region.Comment: 8 pages, LaTex, 2 postscript figures, a reference is correcte

    Induced Gravity II: Grand Unification

    Get PDF
    As an illustration of a renormalizable, asymptotically-free model of induced gravity, we consider an SO(10)SO(10) gauge theory interacting with a real scalar multiplet in the adjoint representation. We show that dimensional transmutation can occur, spontaneously breaking SO(10)SO(10) to SU(5)⊗U(1),SU(5){\otimes}U(1), while inducing the Planck mass and a positive cosmological constant, all proportional to the same scale vv. All mass ratios are functions of the values of coupling constants at that scale. Below this scale (at which the Big Bang may occur), the model takes the usual form of Einstein-Hilbert gravity in de Sitter space plus calculable corrections. We show that there exist regions of parameter space in which the breaking results in a local minimum of the effective action, and a {\bf positive} dilaton (mass)2(\hbox{mass})^2 from two-loop corrections associated with the conformal anomaly. Furthermore, unlike the singlet case we considered previously, some minima lie within the basin of attraction of the ultraviolet fixed point. Moreover, the asymptotic behavior of the coupling constants also lie within the range of convergence of the Euclidean path integral, so there is hope that there will be candidates for sensible vacua. Although open questions remain concerning unitarity of all such renormalizable models of gravity, it is not obvious that, in curved backgrounds such as those considered here, unitarity is violated. In any case, any violation that may remain will be suppressed by inverse powers of the reduced Planck mass.Comment: 44 pages, 5 figures, 2 tables. v2 has new discussion concerning stability of SSB plus related appendix. Additional references added. v3 is version to be published; contains minor revision

    Zero modes in de Sitter background

    Get PDF
    There are five well-known zero modes among the fluctuations of the metric of de~Sitter (dS) spacetime. For Euclidean signature, they can be associated with certain spherical harmonics on the S4S^4 sphere, viz., the vector representation 5\bf5 of the global SO(5)SO(5) isometry. They appear, for example, in the perturbative calculation of the on-shell effective action of dS space, as well as in models containing matter fields. These modes are shown to be associated with collective modes of S4S^4 corresponding to certain coherent fluctuations. When dS space is embedded in flat five dimensions E5,E^5, they may be seen as a legacy of translation of the center of the S4S^4 sphere. Rigid translations of the S4S^4-sphere on E5E^5 leave the classical action invariant but are unobservable displacements from the point of view of gravitational dynamics on S4.S^4. Thus, unlike similar moduli, the center of the sphere is not promoted to a dynamical degree of freedom. As a result, these zero modes do not signify the possibility of physically realizable fluctuations or flat directions for the metric of dS space. They are not associated with Killing vectors on S4S^4 but can be with certain non-isometric, conformal Killing forms that locally correspond to a rescaling of the volume element dV4.dV_4. For convenience, we frame our discussion in the context of renormalizable gravity, but the conclusions apply equally to the corresponding zero modes in Einstein gravity. We expect that these zero modes will be present to all orders in perturbation theory. They will occur for Lorentzian signature as well, so long as the hyperboloid H4H^4 is locally stable, but there remain certain infrared issues that need to be clarified. We conjecture that they will appear in any gravitational theory having dS background as a locally stable solution of the effective action, regardless of whether additional matter is included.Comment: v4, 28pages, no figures; final journal form, minor changes in text and refs from v

    Wind-tunnel acoustic results of two rotor models with several tip designs

    Get PDF
    A three-phase research program has been undertaken to study the acoustic signals due to the aerodynamic interaction of rotorcraft main rotors and tail rotors. During the first phase, two different rotor models with several interchangeable tips were tested in the Langley 4- by 7-Meter Tunnel on the U.S. Army rotor model system. An extensive acoustic data base was acquired, with special emphasis on blade-vortex interaction (BVI) noise. The details of the experimental procedure, acoustic data acquisition, and reduction are documented. The overall sound pressure level (OASPL) of the high-twist rotor systems is relatively insensitive to flight speed but generally increases with rotor tip-path-plane angle. The OASPL of the high-twist rotors is dominated by acoustic energy in the low-frequency harmonics. The OASPL of the low-twist rotor systems shows more dependence on flight speed than the high-twist rotors, in addition to being quite sensitive to tip-path-plane angle. An integrated band-limited sound pressure level, limited by 500 to 3000 Hz, is a useful metric to quantify the occurrence of BVI noise. The OASPL of the low-twist rotors is strongly influenced by the band-limited sound levels, indicating that the blade-vortex impulsive noise is a dominant noise source for this rotor design. The midfrequency acoustic levels for both rotors show a very strong dependence on rotor tip-path-plane angle. The tip-path-plane angle at which the maximum midfrequency sound level occurs consistently decreases with increasing flight speed. The maximum midfrequency sound level measured at a given location is constant regardless of the flight speed

    Labour-market in a border-area; searching for jobs and the influence of borders

    Get PDF
    At the moment borders, border-related problems, and the process of tearing down borders are very much in the centre of interest. Especially in Europe a lot of scientific work is done with regard to borders of countries, to determine their role in the ongoing integration process. In this respect border-regions are considered to be able to play a catalytic role. The borderland economies on both sides of a national border in this view have to be changed into one transborder economy. Initiatives to encourage cross-border integration however are not always successful. To our opinion, one of the main reasons lies in the fact that the border has many faces. The effect of a border differs, depending on the type of interaction (e.g. economic, social-cultural or institutional) and the nature of the region it defines. This paper tries to formulate a conceptual framework, within which the different properties of borders and border-regions are taken into account. Next this model is applied to the regional labour-market in the Nijmegen-Arnhem border-area in the eastern part of the Netherlands. The most important questions to be answered are: - Are there effects stemming from the fact the regional labour-market in the Arnhem-Nijmegen is part of a (peripheral) borderland economy? - What are the effects of the border with regard to the interaction of the region Arnhem-Nijmegen with the neighbouring region in Germany? - Is a part of the "natural" labour-market cut off by the national border, or put in other words, what would happen if the Dutch-German border would disappear completely? Keywords: Borders, Regional labour-markets, Transition

    A local moment approach to the degenerate Anderson impurity model

    Full text link
    The local moment approach is extended to the orbitally-degenerate [SU(2N)] Anderson impurity model (AIM). Single-particle dynamics are obtained over the full range of energy scales, focussing here on particle-hole symmetry in the strongly correlated regime where the onsite Coulomb interaction leads to many-body Kondo physics with entangled spin and orbital degrees of freedom. The approach captures many-body broadening of the Hubbard satellites, recovers the correct exponential vanishing of the Kondo scale for all N, and its universal scaling spectra are found to be in very good agreement with numerical renormalization group (NRG) results. In particular the high-frequency logarithmic decays of the scaling spectra, obtained here in closed form for arbitrary N, coincide essentially perfectly with available numerics from the NRG. A particular case of an anisotropic Coulomb interaction, in which the model represents a system of N `capacitively-coupled' SU(2) AIMs, is also discussed. Here the model is generally characterised by two low-energy scales, the crossover between which is seen directly in its dynamics.Comment: 23 pages, 7 figure

    Protein search for multiple targets on DNA

    Get PDF
    Protein-DNA interactions are crucial for all biological processes. One of the most important fundamental aspects of these interactions is the process of protein searching and recognizing specific binding sites on DNA. A large number of experimental and theoretical investigations have been devoted to uncovering the molecular description of these phenomena, but many aspects of the mechanisms of protein search for the targets on DNA remain not well understood. One of the most intriguing problems is the role of multiple targets in protein search dynamics. Using a recently developed theoretical framework we analyze this question in detail. Our method is based on a discrete-state stochastic approach that takes into account most relevant physical-chemical processes and leads to fully analytical description of all dynamic properties. Specifically, systems with two and three targets have been explicitly investigated. It is found that multiple targets in most cases accelerate the search in comparison with a single target situation. However, the acceleration is not always proportional to the number of targets. Surprisingly, there are even situations when it takes longer to find one of the multiple targets in comparison with the single target. It depends on the spatial position of the targets, distances between them, average scanning lengths of protein molecules on DNA, and the total DNA lengths. Physical-chemical explanations of observed results are presented. Our predictions are compared with experimental observations as well as with results from a continuum theory for the protein search. Extensive Monte Carlo computer simulations fully support our theoretical calculations
    • …
    corecore