5,358 research outputs found

    The Commerce Clause Quartet

    Get PDF

    Device and Method for Continuously Equalizing the Charge State of Lithium Ion Battery Cells

    Get PDF
    A method of equalizing charge states of individual cells in a battery includes measuring a previous cell voltage for each cell, measuring a previous shunt current for each cell, calculating, based on the previous cell voltage and the previous shunt current, an adjusted cell voltage for each cell, determining a lowest adjusted cell voltage from among the calculated adjusted cell voltages, and calculating a new shunt current for each cell

    Ultraviolet laser crystallized ZnO:Al films on sapphire with high Hall mobility for simultaneous enhancement of conductivity and transparency

    Get PDF
    One of the most challenging issues in transparent conductive oxides (TCOs) is to improve their conductivity without compromising transparency. High conductivity in TCO films often comes from a high carrier concentration, which is detrimental to transparency due to free carrier absorption. Here we show that UV laser crystallization (UVLC) of aluminum-doped ZnO (AZO) films prepared by pulsed laser deposition on sapphire results in much higher Hall mobility, allowing relaxation of the constraints of the conductivity/transparency trade-off. X-ray diffraction patterns and morphological characterizations show grain growth and crystallinity enhancement during UVLC, resulting in less film internal imperfections. Optoelectronic measurements show that UVLC dramatically improves the electron mobility, while the carrier concentration decreases which in turn simultaneously increases conductivity and transparency. AZO films under optimized UVLC achieve the highest electron mobility of 79 cm(2)/V s at a low carrier concentration of 7.9 x 10(+19) cm(-3). This is realized by a laser crystallization induced decrease of both grain boundary density and electron trap density at grain boundaries. The infrared (IR) to mid-IR range transmittance spectrum shows UVLC significantly enhances the AZO film transparency without compromising conductivity. (C) 2014 AIP Publishing LLC

    Section 1983 Litigation

    Get PDF

    Differential αv integrin–mediated Ras-ERK signaling during two pathways of angiogenesis

    Get PDF
    Antagonists of αvβ3 and αvβ5 disrupt angiogenesis in response to bFGF and VEGF, respectively. Here, we show that these αv integrins differentially contribute to sustained Ras-extracellular signal–related kinase (Ras-ERK) signaling in blood vessels, a requirement for endothelial cell survival and angiogenesis. Inhibition of FAK or αvβ5 disrupted VEGF-mediated Ras and c-Raf activity on the chick chorioallantoic membrane, whereas blockade of FAK or integrin αvβ3 had no effect on bFGF-mediated Ras activity, but did suppress c-Raf activation. Furthermore, retroviral delivery of active Ras or c-Raf promoted ERK activity and angiogenesis, which anti-αvβ5 blocked upstream of Ras, whereas anti-αvβ3 blocked downstream of Ras, but upstream of c-Raf. The activation of c-Raf by bFGF/αvβ3 not only depended on FAK, but also required p21-activated kinase-dependent phosphorylation of serine 338 on c-Raf, whereas VEGF-mediated c-Raf phosphorylation/activation depended on Src, but not Pak. Thus, integrins αvβ3 and αvβ5 differentially regulate the Ras-ERK pathway, accounting for distinct vascular responses during two pathways of angiogenesis

    Light-Triggered Myosin Activation for Probing Dynamic Cellular Processes

    Get PDF
    Shining light on myosin: The incorporation of a caging group onto the essential phosphoserine residue of myosin by protein semisynthesis enables light-triggered activation of the protein (see picture). Caging eliminates the myosin activity, but exposure to 365 nm light restores its function to native levels. The caged protein can also be introduced into cells to facilitate studies of myosin with precise spatial and temporal resolution.American Heart Association (Fellowship)National Institutes of Health (U.S.) (NIH Cell Migration Consortium (GM064346))National Institute of General Medical Sciences (U.S.) (Biotechnology Training Grant

    Probabilities in the inflationary multiverse

    Full text link
    Inflationary cosmology leads to the picture of a "multiverse," involving an infinite number of (spatially infinite) post-inflationary thermalized regions, called pocket universes. In the context of theories with many vacua, such as the landscape of string theory, the effective constants of Nature are randomized by quantum processes during inflation. We discuss an analytic estimate for the volume distribution of the constants within each pocket universe. This is based on the conjecture that the field distribution is approximately ergodic in the diffusion regime, when the dynamics of the fields is dominated by quantum fluctuations (rather than by the classical drift). We then propose a method for determining the relative abundances of different types of pocket universes. Both ingredients are combined into an expression for the distribution of the constants in pocket universes of all types.Comment: 18 pages, RevTeX 4, 2 figures. Discussion of the full probability in Sec.VI is sharpened; the conclusions are strengthened. Note added explaining the relation to recent work by Easther, Lim and Martin. Some references adde
    • …
    corecore