29,860 research outputs found

    Coherent caloritronics in Josephson-based nanocircuits

    Full text link
    We describe here the first experimental realization of a heat interferometer, thermal counterpart of the well-known superconducting quantum interference device (SQUID). These findings demonstrate, on the first place, the existence of phase-dependent heat transport in Josephson-based superconducting circuits and, on the second place, open the way to novel ways of mastering heat at the nanoscale. Combining the use of external magnetic fields for phase biasing and different Josephson junction architectures we show here that a number of heat interference patterns can be obtained. The experimental realization of these architectures, besides being relevant from a fundamental physics point of view, might find important technological application as building blocks of phase-coherent quantum thermal circuits. In particular, the performance of two different heat rectifying devices is analyzed.Comment: 34 pages, 15 figures, review article for Ultra-low temperatures and nanophysics ULTN2013. Microkelvin Proceeding

    Luminosity segregation versus fractal scaling in the galaxy distribution

    Full text link
    In this letter I present results from a correlation analysis of three galaxy redshift catalogs: the SSRS2, the CfA2 and the PSCz. I will focus on the observation that the amplitude of the two--point correlation function rises if the depth of the sample is increased. There are two competing explanations for this observation, one in terms of a fractal scaling, the other based on luminosity segregation. I will show that there is strong evidence that the observed growth is due to a luminosity dependent clustering of the galaxies.Comment: 7 pages, EPL in pres

    Metastable states influence on the magnetic behavior of the triangular lattice: Application to the spin-chain compound Ca3Co2O6

    Full text link
    It is known that the spin-chain compound Ca3Co2O6 exhibits very interesting plateaus in the magnetization as a function of the magnetic field at low temperatures. The origin of them is still controversial. In this paper we study the thermal behavior of this compound with a single-flip Monte Carlo simulation on a triangular lattice and demonstrate the decisive influence of metastable states in the splitting of the ferrimagnetic 1/3 plateau below 10 K. We consider the [Co2O6]n chains as giant magnetic moments described by large Ising spins on planar clusters with open boundary conditions. With this simple frozen-moment model we obtain stepped magnetization curves which agree quite well with the experimental results for different sweeping rates. We describe particularly the out-of-equilibrium states that split the low-temperature 1/3 plateau into three steps. They relax thermally to the 1/3 plateau, which has long-range order at the equilibrium. Such states are further analyzed with snapshots unveiling a domain-wall structure that is responsible for the observed behavior of the 1/3 plateau. A comparison is also given of the exact results in small triangular clusters with our Monte Carlo results, providing further support for our thermal description of this compound.Comment: 8 pages, 11 figures, submitted to PR

    Mass-radius relation for magnetized strange quark stars

    Get PDF
    We review the stability of magnetized strange quark matter (MSQM) within the phenomenological MIT bag model, taking into account the variation of the relevant input parameters, namely, the strange quark mass, baryon density, magnetic field and bag parameter. A comparison with magnetized asymmetric quark matter in β\beta-equilibrium as well as with strange quark matter (SQM) is presented. We obtain that the energy per baryon for MSQM decreases as the magnetic field increases, and its minimum value at vanishing pressure is lower than the value found for SQM, which implies that MSQM is more stable than non-magnetized SQM. The mass-radius relation for magnetized strange quark stars is also obtained in this framework.Comment: 7 pages, 6 figures. To be published in the Proceedings of 4th International Workshop on Relativistic Astrophysical and Astronomy IWARA0

    A QCD sum rule calculation of the X±(5568)→Bs0π±X^\pm(5568) \to B_{s}^0\pi^\pm decay width

    Get PDF
    To understand the nature of the X(5568)X(5568), recently observed in the mass spectrum of the Bs0π±B_{s}^0\pi^\pm system by the D0 Collaboration, we have investigated, in a previous work, a scalar tetraquark (diquak-antidiquark) structure for it, within the two-point QCD sum rules method. The result found for its mass agrees well with the experimental value. Encouraged by this finding we now extend our calculations to obtain the decay width of X(5568)X(5568) to Bs0π±B_{s}^0\pi^\pm using the three-point QCD sum rule. We obtain a value of (20.4\pm8.7)\MeV, which, on comparing with the experimental value of 21.9\pm6.4 (\mbox{sta})^{+5.0}_{-2.5}(\mbox{syst}) \MeV/c^2, reinforces the scalar four quark nature of X(5568)X(5568).Comment: Minor modifications made. Some new discussions and references adde

    Physical qubits from charged particles: IR divergences in quantum information

    Get PDF
    We consider soft photons effects (IR structure of QED) on the construction of physical qubits. Soft-photons appear when we build charged qubits from the asymptotic states of QED. This construction is necessary in order to include the effect of soft photons on entanglement measures. The nonexistence of free charged particles (due to the long range of QED interactions) lead us to question the sense of the very concept of free charged qubit. In this letter, using the "dressing" formalism, we build physical charged qubits from dressed fields which have the correct asymptotic behavior, are gauge invariant, their propagators have a particle pole structure and are free from infrared divergences. Finally, we discuss the impact of the soft corrections on the entanglement measures.Comment: 4 pages, 2 figures, RevTeX. Version 2: Some references update

    Directed Random Markets: Connectivity determines Money

    Full text link
    Boltzmann-Gibbs distribution arises as the statistical equilibrium probability distribution of money among the agents of a closed economic system where random and undirected exchanges are allowed. When considering a model with uniform savings in the exchanges, the final distribution is close to the gamma family. In this work, we implement these exchange rules on networks and we find that these stationary probability distributions are robust and they are not affected by the topology of the underlying network. We introduce a new family of interactions: random but directed ones. In this case, it is found the topology to be determinant and the mean money per economic agent is related to the degree of the node representing the agent in the network. The relation between the mean money per economic agent and its degree is shown to be linear.Comment: 14 pages, 6 figure
    • …
    corecore