27 research outputs found

    Networks Models of Actin Dynamics during Spermatozoa Postejaculatory Life: A Comparison among Human-Made and Text Mining-Based Models

    Get PDF
    Here we realized a networks-based model representing the process of actin remodelling that occurs during the acquisition of fertilizing ability of human spermatozoa (HumanMade_ActinSpermNetwork, HM_ASN). Then, we compared it with the networks provided by two different text mining tools: Agilent Literature Search (ALS) and PESCADOR. As a reference, we used the data from the online repository Kyoto Encyclopaedia of Genes and Genomes (KEGG), referred to the actin dynamics in a more general biological context. We found that HM_ALS and the networks from KEGG data shared the same scale-free topology following the Barabasi-Albert model, thus suggesting that the information is spread within the network quickly and efficiently. On the contrary, the networks obtained by ALS and PESCADOR have a scale-free hierarchical architecture, which implies a different pattern of information transmission. Also, the hubs identified within the networks are different: HM_ALS and KEGG networks contain as hubs several molecules known to be involved in actin signalling; ALS was unable to find other hubs than “actin,” whereas PESCADOR gave some nonspecific result. This seems to suggest that the human-made information retrieval in the case of a specific event, such as actin dynamics in human spermatozoa, could be a reliable strategy

    Chapter Membrane Dynamics of Spermatozoa during Capacitation: New Insight in Germ Cells Signalling

    Get PDF
    The study of germline stem cells and of germline cells has deep implications for the understanding of fertility, development and cancer. Nowadays, we are experiencing the very fascinating challenge of application of –OMICS technologies to this issue, which is opening new and unexpected horizons in virtually all the branches of biology. Here, we carried out a review of signalling systems involved in maturation of male germ cells and in the process that leads them to become fully fertile. In particular, we discuss the control mechanisms involved in capacitation and acrosome reaction that act at membrane level. Indeed, spermatozoa membranes play key roles in determining the achievement of fertility: they are the interface with the surrounding environment, they locate the signal transduction systems and they are active in recognizing and binding the oocyte. In addition, we discuss the effect of several compounds that could exert a negative effect on reproductive activity, by interfering with the endocrine axis, the so-called endocrine disruptors

    Graphene and Reproduction: A Love-Hate Relationship

    Get PDF
    Since its discovery, graphene and its multiple derivatives have been extensively used in many fields and with different applications, even in biomedicine. Numerous efforts have been made to elucidate the potential toxicity derived from their use, giving rise to an adequate number of publications with varied results. On this basis, the study of the reproductive function constitutes a good tool to evaluate not only the toxic effects derived from the use of these materials directly on the individual, but also the potential toxicity passed on to the offspring. By providing a detailed scientometric analysis, the present review provides an updated overview gathering all the research studies focused on the use of graphene and graphene-based materials in the reproductive field, highlighting the consequences and effects reported to date from experiments performed in vivo and in vitro and in different animal species (from Archea to mammals). Special attention is given to the oxidized form of graphene, graphene oxide, which has been recently investigated for its ability to increase the in vitro fertilization outcomes. Thus, the potential use of graphene oxide against infertility is hypothesized here, probably by engineering the spermatozoa and thus manipulating them in a safer and more efficient way

    Membrane Dynamics of Spermatozoa during Capacitation: New Insight in Germ Cells Signalling

    Get PDF
    The study of germline stem cells and of germline cells has deep implications for the understanding of fertility, development and cancer. Nowadays, we are experiencing the very fascinating challenge of application of –OMICS technologies to this issue, which is opening new and unexpected horizons in virtually all the branches of biology. Here, we carried out a review of signalling systems involved in maturation of male germ cells and in the process that leads them to become fully fertile. In particular, we discuss the control mechanisms involved in capacitation and acrosome reaction that act at membrane level. Indeed, spermatozoa membranes play key roles in determining the achievement of fertility: they are the interface with the surrounding environment, they locate the signal transduction systems and they are active in recognizing and binding the oocyte. In addition, we discuss the effect of several compounds that could exert a negative effect on reproductive activity, by interfering with the endocrine axis, the so-called endocrine disruptors

    ACE2 Receptor and Its Isoform Short-ACE2 Are Expressed on Human Spermatozoa

    Get PDF
    Angiotensin-converting enzyme 2 (ACE2) is a protein widely expressed in numerous cell types, with different biological roles mainly related to the renin-angiotensin system. Recently, ACE2 has been in the spotlight due to its involvement in the SARS-CoV-2 entry into cells. There are no data available regarding the expression of ACE2 and its short-ACE2 isoform at the protein level on human spermatozoa. Here, protein expression was demonstrated by western blot and the percentage of sperm displaying surface ACE2 was assessed by flow cytometry. Immunocytochemistry assays showed that full-length ACE2 was mainly expressed in sperm midpiece, while short ACE2 was preferentially distributed on the equatorial and post-acrosomal region of the sperm head. To our knowledge, this is the first study demonstrating the expression of protein ACE2 on spermatozoa. Further studies are warranted to determine the role of ACE2 isoforms in male reproduction

    Role and Modulation of TRPV1 in Mammalian Spermatozoa: An Updated Review

    Get PDF
    Based on the abundance of scientific publications, the polymodal sensor TRPV1 is known as one of the most studied proteins within the TRP channel family. This receptor has been found in numerous cell types from different species as well as in spermatozoa. The present review is focused on analyzing the role played by this important channel in the post-ejaculatory life of spermatozoa, where it has been described to be involved in events such as capacitation, acrosome reaction, calcium trafficking, sperm migration, and fertilization. By performing an exhaustive bibliographic search, this review gathers, for the first time, all the modulators of the TRPV1 function that, to our knowledge, were described to date in different species and cell types. Moreover, all those modulators with a relationship with the reproductive process, either found in the female tract, seminal plasma, or spermatozoa, are presented here. Since the sperm migration through the female reproductive tract is one of the most intriguing and less understood events of the fertilization process, in the present work, chemotaxis, thermotaxis, and rheotaxis guiding mechanisms and their relationship with TRPV1 receptor are deeply analyzed, hypothesizing its (in)direct participation during the sperm migration. Last, TRPV1 is presented as a pharmacological target, with a special focus on humans and some pathologies in mammals strictly related to the male reproductive system

    Graphene oxide affects in vitro fertilization outcome by interacting with sperm membrane in an animal model

    Get PDF
    We realized the exposure of boar spermatozoa to graphene oxide (GO) at concentration of 0.5, 1, 5, 10 and 50 ĂŽÂĽg/mL in an in vitro system able to promote the capacitation, i.e. the process that allows sperm cells to became fertile. Interestingly, we found that the highest GO concentration (5, 10 and 50 ĂŽÂĽg/mL) are toxic for spermatozoa, while the lowest ones (0.5 and 1 ĂŽÂĽg/mL) seem to significantly increase the sperm cells fertilizing ability (p >.05) in an in vitro fertilization experiment. To explain this finding, we investigated the effect of GO on sperm membrane structure (atomic force microscopy) and function (confocal microscopy and flow cytometry, substrate adhesion). As a result, we found that GO is able to interact with spermatozoa membranes and, in particular, it seems to be able to extract the cholesterol, which is a key player in spermatozoa physiology, from plasma membrane of boar spermatozoa incubated under capacitation conditions. In our opinion, these results are very important because they allow identifying either a plausible mechanism of GO toxicity on spermatozoa and new strategies to manage sperm capacitation

    26S PROTEASOME AND PKA MODULATE MAMMALIAN SPERM CAPACITATION BY CREATING AN INTEGRATED DIALOGUE: A COMPUTATIONAL ANALYSIS

    Get PDF
    Recent experimental evidence suggests the involvement of the 26S proteasome, the main protease active in eukaryotic cells, in the process that leads mammalian sperm to become fully fertile, so-called capacitation. Unfortunately, its role in male gametes signaling is still far from being completely understood. For this reason, here, we realized a computational model as an attempt to rebuild and explore 26S proteasome signaling cascade, aggregating all the molecular data available to date and realizing the Proteasome Interactome Network (PIN). Once obtained the network (i.e., a graph to represent the molecules as nodes and the interactions among them as links), we assessed its topology to infer important biological information. PIN is composed of 157 nodes, 248 links and it is characterized by a scale-free topology, following the Barabasi Albert model. In other words, it possesses a large amount of scarcely linked nodes and a small set of highly linked nodes, the hubs, which act as system controllers. This peculiar topology confers to the network relevant biological features: it is robust against random attacks, easily navigable and controllable and it is possible to infer new information from it. Indeed, the analysis of PIN showed that PKA and 26S proteasome were strongly interconnected and both were active in sperm signaling by influencing the protein phosphorylation pattern and then controlling several key events in sperm capacitation, such as membrane and cytoskeleton remodeling. In conclusion, the network model could explain many biological aspects of sperm physiology that are out of focus looking at the single molecular determinant, overcoming the reductionist approach which did not consider the complexity of molecules and their interactions. This could be helpful to identify potential diagnostic markers and therapeutic strategies concurring in explaining and approaching male infertility

    Pre-Treatment of Swine Oviductal Epithelial Cells with Progesterone Increases the Sperm Fertilizing Ability in an IVF Model

    Get PDF
    Mammalian spermatozoa are infertile immediately after ejaculation and need to undergo a functional modification, called capacitation, in order to acquire their fertilizing ability. Since oviductal epithelial cells (SOECs) and progesterone (P4) are two major modulators of capacitation, here we investigated their impact on sperm functionality by using an IVF swine model. To that, we treated SOECs with P4 at 10, 100, and 1000 ng/mL before the coincubation with spermatozoa, thus finding that P4 at 100 ng/mL does not interfere with the cytoskeleton dynamics nor the cells' doubling time, but it promotes the sperm capacitation by increasing the number of spermatozoa per polyspermic oocyte (p < 0.05). Moreover, we found that SOECs pre-treatment with P4 100 ng/mL is able to promote an increase in the sperm fertilizing ability, without needing the hormone addition at the time of fertilization. Our results are probably due to the downregulation in the expression of OVGP1, SPP1 and DMBT1 genes, confirming an increase in the dynamism of our system compared to the classic IVF protocols. The results obtained are intended to contribute to the development of more physiological and efficient IVF systems
    corecore