6,391 research outputs found

    Generalized Chaplygin Gas Models tested with SNIa

    Full text link
    The so called Generalized Chaplygin Gas (GCG) with the equation of state p=−Aραp = - \frac{A}{{\rho}^{\alpha}} was recently proposed as a candidate for dark energy in the Universe. In this paper we confront the GCG with SNIa data. Specifically we have tested the GCG cosmology in three different classes of models with (1) Ωm=0.3\Omega_m= 0.3, ΩCh=0.7\Omega_{Ch}= 0.7; (2) Ωm=0.05\Omega_m= 0.05, ΩCh=0.95\Omega_{Ch}= 0.95 and (3) Ωm=0\Omega_m = 0, ΩCh=1\Omega_{Ch} = 1, as well as the model withouth any assumption on Ωm\Omega_m. The best fitted models are obtained by minimalizing the χ2\chi^2 function and χ2\chi^2 levels in the (A0,α)(A_0, \alpha) plane. We supplemented our analysis with confidence intervals in the (A0,α)(A_0, \alpha) plane, as well as one-dimensional probability distribution functions for models parameter. The general conclusion is that SNIa data strongly support the Chaplygin gas (with α=1\alpha = 1). Extending our analysisby relaxing the flat prior lead to the result that even though the best fitted values of Ωk\Omega_k are formally non-zero, still they are close to flat case. It should be viewed as an advantage of the GCG model since in similar analysisof Λ\LambdaCDM model high negative value of Ωk\Omega_{k} were found to be bestfitted to the data and independent inspiration from CMBR and extragalactic astronomy has been invoked to fix the curvature problem. Our results show clearly that in Generalized Chaplygin Gas cosmology distant z>1z >1 supernovae should be brighter than in Λ\LambdaCDM model.This prediction seems to be confirmed with new Riess high redshift SNIa sample. Moreover, we argue that with the future SNAP data it would be possible to differentiate between models with various value of α\alpha parameter and/or discriminated between GCG, Cardassian and Λ\LambdaCDM modelsComment: 54 pages 29 figures improved version analysis flat prior relaxed high redshift Riess SNIa sample include

    Quantum Field Theory on Spacetimes with a Compactly Generated Cauchy Horizon

    Get PDF
    We prove two theorems which concern difficulties in the formulation of the quantum theory of a linear scalar field on a spacetime, (M,g_{ab}), with a compactly generated Cauchy horizon. These theorems demonstrate the breakdown of the theory at certain `base points' of the Cauchy horizon, which are defined as `past terminal accumulation points' of the horizon generators. Thus, the theorems may be interpreted as giving support to Hawking's `Chronology Protection Conjecture', according to which the laws of physics prevent one from manufacturing a `time machine'. Specifically, we prove: Theorem 1: There is no extension to (M,g_{ab}) of the usual field algebra on the initial globally hyperbolic region which satisfies the condition of F-locality at any base point. In other words, any extension of the field algebra must, in any globally hyperbolic neighbourhood of any base point, differ from the algebra one would define on that neighbourhood according to the rules for globally hyperbolic spacetimes. Theorem 2: The two-point distribution for any Hadamard state defined on the initial globally hyperbolic region must (when extended to a distributional bisolution of the covariant Klein-Gordon equation on the full spacetime) be singular at every base point x in the sense that the difference between this two point distribution and a local Hadamard distribution cannot be given by a bounded function in any neighbourhood (in MXM) of (x,x). Theorem 2 implies quantities such as the renormalized expectation value of \phi^2 or of the stress-energy tensor are necessarily ill-defined or singular at any base point. The proofs rely on the `Propagation of Singularities' theorems of Duistermaat and H\"ormander.Comment: 37 pages, LaTeX, uses latexsym and amsbsy, no figures; updated version now published in Commun. Math. Phys.; no major revisions from original versio

    Quantum fidelity in the thermodynamic limit

    Full text link
    We study quantum fidelity, the overlap between two ground states of a many-body system, focusing on the thermodynamic regime. We show how drop of fidelity near a critical point encodes universal information about a quantum phase transition. Our general scaling results are illustrated in the quantum Ising chain for which a remarkably simple expression for fidelity is found.Comment: 4 pages, 4 figures, rearranged a bit to improve presentatio

    Vacuum as a less hostile environment to entanglement

    Full text link
    We derive sufficient conditions for infinite-dimensional systems whose entanglement is not completely lost in a finite time during its decoherence by a passive interaction with local vacuum environments. The sufficient conditions allow us to clarify a class of bipartite entangled states which preserve their entanglement or, in other words, are tolerant against decoherence in a vacuum. We also discuss such a class for entangled qubits.Comment: Replaced by the published versio

    Molecular dynamics of folding of secondary structures in Go-type models of proteins

    Full text link
    We consider six different secondary structures of proteins and construct two types of Go-type off-lattice models: with the steric constraints and without. The basic aminoacid-aminoacid potential is Lennard Jones for the native contacts and a soft repulsion for the non-native contacts. The interactions are chosen to make the target secondary structure be the native state of the system. We provide a thorough equilibrium and kinetic characterization of the sequences through the molecular dynamics simulations with the Langevin noise. Models with the steric constraints are found to be better folders and to be more stable, especially in the case of the ÎČ\beta-structures. Phononic spectra for vibrations around the native states have low frequency gaps that correlate with the thermodynamic stability. Folding of the secondary structures proceeds through a well defined sequence of events. For instance, α\alpha-helices fold from the ends first. The closer to the native state, the faster establishment of the contacts. Increasing the system size deteriorates the folding characteristics. We study the folding times as a function of viscous friction and find a regime of moderate friction with the linear dependence. We also consider folding when one end of a structure is pinned which imitates instantaneous conditions when a protein is being synthesized. We find that, under such circumstances, folding of helices is faster and of the ÎČ\beta-sequences slower.Comment: REVTeX, 14 pages, EPS figures included, JCP in pres

    Evolution of a Self-interacting Scalar Field in the spacetime of a Higher Dimensional Black Hole

    Full text link
    In the spacetime of n-dimensional static charged black hole we examine the mechanism by which the self-interacting scalar hair decay. It is turned out that the intermediate asymptotic behaviour of the self-interacting scalar field is determined by an oscilatory inverse power law. We confirm our results by numerical calculations.Comment: RevTex, 6 pages, 8 figures, to be published in Phys.Rev.D1

    3C454.3 reveals the structure and physics of its 'blazar zone'

    Full text link
    Recent multi-wavelength observations of 3C454.3, in particular during its giant outburst in 2005, put severe constraints on the location of the 'blazar zone', its dissipative nature, and high energy radiation mechanisms. As the optical, X-ray, and millimeter light-curves indicate, significant fraction of the jet energy must be released in the vicinity of the millimeter-photosphere, i.e. at distances where, due to the lateral expansion, the jet becomes transparent at millimeter wavelengths. We conclude that this region is located at ~10 parsecs, the distance coinciding with the location of the hot dust region. This location is consistent with the high amplitude variations observed on ~10 day time scale, provided the Lorentz factor of a jet is ~20. We argue that dissipation is driven by reconfinement shock and demonstrate that X-rays and gamma-rays are likely to be produced via inverse Compton scattering of near/mid IR photons emitted by the hot dust. We also infer that the largest gamma-to-synchrotron luminosity ratio ever recorded in this object - having taken place during its lowest luminosity states - can be simply due to weaker magnetic fields carried by a less powerful jet.Comment: 19 pages, 3 figures, accepted for publication in Ap

    Core-Collapse Supernovae: Modeling between Pragmatism and Perfectionism

    Full text link
    We briefly summarize recent efforts in Garching for modeling stellar core collapse and post-bounce evolution in one and two dimensions. The transport of neutrinos of all flavors is treated by iteratively solving the coupled system of frequency-dependent moment equations together with a model Boltzmann equation which provides the closure. A variety of progenitor stars, different nuclear equations of state, stellar rotation, and global asymmetries due to large-mode hydrodynamic instabilities have been investigated to ascertain the road to finally successful, convectively supported neutrino-driven explosions.Comment: 8 pages, contribution to Procs. 12th Workshop on Nuclear Astrophysics, Ringberg Castle, March 22-27, 200

    N-particle nonclassicality without N-particle correlations

    Full text link
    Most of known multipartite Bell inequalities involve correlation functions for all subsystems. They are useless for entangled states without such correlations. We give a method of derivation of families of Bell inequalities for N parties, which involve, e.g., only (N-1)-partite correlations, but still are able to detect proper N-partite entanglement. We present an inequality which reveals five-partite entanglement despite only four-partite correlations. Classes of inequalities introduced here can be put into a handy form of a single non-linear inequality. An example is given of an N qubit state, which strongly violates such an inequality, despite having no N-qubit correlations. This surprising property might be of potential value for quantum information tasks.Comment: 5 page
    • 

    corecore