10 research outputs found

    Supporting both learning and research in a UK post-1992 university library: a case study

    Get PDF
    Nationally, there has been debate on the role of research within higher education and increased interest in the teaching/research nexus. A team of Academic Liaison Librarians at Anglia Polytechnic University was awarded funding to investigate the extent to which learning resources overlap with research resources, whether researcher/teachers encourage their students to use the resources they use themselves and how far electronic resources have affected the relationship between learning and research materials. Semistructured interviews were carried out with 21 academics who are both teachers and researchers. They proved to be committed to using research in their teaching. Students were encouraged to engage with research through the recommendation of resources, seminar discussion, and researchers’ own work for reading and illustrating methodologies. Respondents claimed to be making significant use of the APU library website, online databases and journals. The majority of them were also recommending the same resources to their students. Convenience, speed and variety of information sources were quoted as some of the advantages of the new e-environment. A loss of a relationship with librarians and with the physical library was cited as an example of negative effects of the electronic resource environment

    Produção de biomassa, teor e composição do óleo essencial de Mentha x piperita L. em resposta a fontes e doses de nitrogênio Biomass production, essential oil yield and composition of Mentha x piperita L. according to nitrogen sources and doses

    Get PDF
    A adubação nitrogenada influencia o teor e a qualidade dos óleos essenciais de plantas aromáticas. O objetivo deste trabalho foi avaliar a influência de diferentes fontes e doses de nitrogênio na produção de biomassa e teor do óleo essencial de M. x piperita. O delineamento experimental foi de blocos casualizados em esquema fatorial 2 x 3 (duas fontes de nitrogênio e três doses). A aplicação nitrogenada de cobertura foi realizada 30 dias após o transplante das mudas. O óleo essencial foi extraído pelo processo de hidrodestilação em aparelho graduado Clevenger e sua composição química foi analisada por cromatografia gasosa acoplada à espectrometria de massa. As fontes e doses de nitrogênio não influenciaram significativamente a biomassa de folhas e ramos, assim como a produtividade e o teor do óleo essencial. No entanto, a fonte de nitrogênio pode alterar significativamente a composição do óleo essencial de M. x piperita. O teor de mentol e neomentol foi menor quando 40 kg ha-1 de uréia foi aplicada, em comparação com a mesma dose de sulfato de amônio. Os teores de mentona foram influenciados apenas pela fonte de nitrogênio, onde níveis mais elevados foram observados quando o sulfato de amônio foi aplicado. Nenhuma alteração nos teores de mentofurano foi encontrada para as diferentes fontes e doses de nitrogênio. Considerando a grande importância econômica de mentol presente no óleo essencial de menta, os resultados obtidos indicaram que a utilização de 20 kg ha-1 de nitrogênio é suficiente para garantir a boa produtividade de óleo essencial e alto teor de mentol, e que altas doses de uréia devem ser evitadas.<br>Nitrogen fertilization affects the essential oil yield and composition of aromatic plants. The objective of this work was to evaluate the effect of nitrogen sources and doses on biomass production and essential oil yield and composition of M. x piperita L. The experimental design was in randomized blocks with four replications and the treatments in a 2 x 3 factorial design, corresponding to two nitrogen sources and three nitrogen doses. The nitrogen topdressing was applied 30 days after planting. The essential oil was obtained by hydrodestilation using a Clevenger apparatus, and the composition was analyzed by gas chromatography and coupled to a mass spectrometry. The nitrogen sources and doses did not significantly affect the leaf and stem biomass, as well as the essential oil yield and productivity. However, the nitrogen source can significantly change the essential oil composition of M. x piperita. The level of menthol and neomenthol was lower when 40 kg ha-1 of urea was applied compared to the same dose of ammonium sulphate. Menthone levels were affected only by the nitrogen source, where higher levels were observed when ammonium sulphate was applied. No changes on menthofurane levels were found for different nitrogen sources and doses. Considering the great economic importance of menthol from mint essential oils, the obtained results indicated that the use of 20 kg ha-1 of nitrogen is enough to guarantee satisfactory essential oil yield and great menthol levels and that high doses of urea should be avoided
    corecore