622 research outputs found

    The generation of noise by the fluctuations in gas temperature into a turbine

    Get PDF
    An actuator disc analysis is used to calculate the pressure fluctuations produced by the convection of temperature fluctuations (entropy waves) into one or more rows of blades. The perturbations in pressure and temperature must be small, but the mean flow deflection and acceleration are generally large. The calculations indicate that the small temperature fluctuations produced by combustion chambers are sufficient to produce large amounts of acoustic power. Although designed primarily to calculate the effect of entropy waves, the method is more general and is able to predict the pressure and vorticity waves generated by upstream or downstream going pressure waves or by vorticity waves impinging on blade rows

    Effect of the NACA Injection Impeller on the Mixture Distribution of a Double-Row Radial Aircraft Engine

    Get PDF
    The NACA injection impeller was developed to improve the mixture distribution of aircraft engines by discharging the fuel from a centrifugal supercharger impeller, thus promoting a thorough mixing of fuel and charge air. Tests with a double-row radial aircraft engine indicated that for the normal range of engine power the NACA injection impeller provided marked improvement in mixture distribution over the standard spray-bar injection system used in the same engine. The mixture distribution at cruising conditions was excellent; at 1200, 15OO, and 1700 brake horsepower, the differences between the fuel-air ratios of the richest and the leanest cylinders were reduced to approximately one-third their former values. The maximum cylinder temperatures were reduced about 30 [degrees] F and the temperature distribution was improved by approximately the degree expected from the improvement in mixture distribution. Because the mixture distribution of the engine tested improves slightly at engine powers exceeding 1500 brake horsepower and because the effectiveness of the particular impeller diminished slightly at high rates of fuel flow, the improvement in mixture distribution at rated power and rich mixtures was less than that for other conditions. The difference between the fuel-air ratios of the richest and the leanest cylinders of the engine using the standard spray bar was so great that the fuel-air ratios of several cylinders were well below the chemically correct mixture, whereas other cylinders were operating at rich mixtures. Consequently, enrichment to improve engine cooling actually increascd some of the critical temperatures. The uniform mixture distribution providod by the injection impeller restored the normal response of cylinder temperatures to mixture enrichnent

    Offshore R+D Facility

    Get PDF
    Design a Research + Development facility that merges with a functional Oil Rig. This center will house both a Marine Research Center and Oil rig Research + Development center. Both of these facilities will be in a separate structure than the Oil Rig but will have a connection back to the Living Quarter

    A Systematic Experimental and Computational Investigation of a Class of Contoured Wall Fuel Injectors

    Get PDF
    The performance of a particular class of fuel injectors for scramjet engine applications is addressed. The contoured wall injectors were aimed at augmenting mixing through axial vorticity production arising from interaction of the fueVair interface with an oblique shock. Helium was used to simulate hydrogen fuel and was injected at Mach 1.7 into a Mach 6 airstream. The effects of incoming boundary layer height. injector spacing, and injectant to freestream pressure and velocity ratios were investigated. Results from threedimensional flow field surveys and Navier-Stokes simulations are presented. Performance was judged in terms of mixing, loss generation and jet penetration. Injector performance was strongly dependent on the displacement effect of the hypersonic boundary layer which acted to modify the effective wall geometry. The impact of the boundary layer varied with injector array spacing. Widely-spaced arrays were more resilient to the detrimental effects of large boundary layers. Strong dependence on injectant to free stream pressure ratio was also displayed. Pressure ratios near unity were most conducive to losseffective mixing and strong jet penetration. Effects due to variation in mean shear associated with non-unity velocity ratios were found to be secondary within the small range of values tested

    Visual feedback alters force control and functional activity in the visuomotor network after stroke.

    Get PDF
    Modulating visual feedback may be a viable option to improve motor function after stroke, but the neurophysiological basis for this improvement is not clear. Visual gain can be manipulated by increasing or decreasing the spatial amplitude of an error signal. Here, we combined a unilateral visually guided grip force task with functional MRI to understand how changes in the gain of visual feedback alter brain activity in the chronic phase after stroke. Analyses focused on brain activation when force was produced by the most impaired hand of the stroke group as compared to the non-dominant hand of the control group. Our experiment produced three novel results. First, gain-related improvements in force control were associated with an increase in activity in many regions within the visuomotor network in both the stroke and control groups. These regions include the extrastriate visual cortex, inferior parietal lobule, ventral premotor cortex, cerebellum, and supplementary motor area. Second, the stroke group showed gain-related increases in activity in additional regions of lobules VI and VIIb of the ipsilateral cerebellum. Third, relative to the control group, the stroke group showed increased activity in the ipsilateral primary motor cortex, and activity in this region did not vary as a function of visual feedback gain. The visuomotor network, cerebellum, and ipsilateral primary motor cortex have each been targeted in rehabilitation interventions after stroke. Our observations provide new insight into the role these regions play in processing visual gain during a precisely controlled visuomotor task in the chronic phase after stroke

    Shock enhancement and control of hypersonic mixing and combustion

    Get PDF
    The possibility that shock enhanced mixing can substantially increase the rate of mixing between coflowing streams of hydrogen and air has been studied in experimental and computational investigations. Early numerical computations indicated that the steady interaction between a weak shock in air with a coflowing hydrogen jet can be well approximated by the two-dimensional time-dependent interaction between a weak shock and an initially circular region filled with hydrogen imbedded in air. An experimental investigation of the latter process has been carned out in the Caltech 17 Inch Shock Tube in experiments in which the laser induced fluorescence of byacetyl dye is used as a tracer for the motion of the helium gas after shock waves have passed across the helium cylinder. The flow field has also been studied using an Euler code computation of the flow field. Both investigations show that the shock impinging process causes the light gas cylinder to split into two parts. One of these mixes rapidly with air and the other forms a stably stratified vortex pair which mixes more slowly; about 60% of the light gas mixes rapidly with the ambient fluid. The geometry of the flow field and the mixing process and scaling parameters are discussed here. The success of this program encouraged the exploration of a low drag injection system in which the basic concept of shock generated streamwise vorticity could be incorporated in an injector for a Scramjet combustor at Mach numbers between 5 and 8. The results of a substantial computational program and a description of the wind tunnel model and preliminary experimental results obtained in the High Reynolds Number Mach 6 Tunnel at NASA Langley Research Center are given here

    Review and synthesis of problems and directions for large scale geographic information system development

    Get PDF
    Problems and directions for large scale geographic information system development were reviewed and the general problems associated with automated geographic information systems and spatial data handling were addressed
    • …
    corecore