919 research outputs found

    Outage Probability of Multiple-Input Single-Output (MISO) Systems with Delayed Feedback

    Full text link
    We investigate the effect of feedback delay on the outage probability of multiple-input single-output (MISO) fading channels. Channel state information at the transmitter (CSIT) is a delayed version of the channel state information available at the receiver (CSIR). We consider two cases of CSIR: (a) perfect CSIR and (b) CSI estimated at the receiver using training symbols. With perfect CSIR, under a short-term power constraint, we determine: (a) the outage probability for beamforming with imperfect CSIT (BF-IC) analytically, and (b) the optimal spatial power allocation (OSPA) scheme that minimizes outage numerically. Results show that, for delayed CSIT, BF-IC is close to optimal for low SNR and uniform spatial power allocation (USPA) is close to optimal at high SNR. Similarly, under a long-term power constraint, we show that BF-IC is close to optimal for low SNR and USPA is close to optimal at high SNR. With imperfect CSIR, we obtain an upper bound on the outage probability with USPA and BF-IC. Results show that the loss in performance due to imperfection in CSIR is not significant, if the training power is chosen appropriately.Comment: Submitted to IEEE Transactions on Communications Jan 2007, Revised Jun 2007, Revised Nov 200

    Spanning trees short or small

    Full text link
    We study the problem of finding small trees. Classical network design problems are considered with the additional constraint that only a specified number kk of nodes are required to be connected in the solution. A prototypical example is the kkMST problem in which we require a tree of minimum weight spanning at least kk nodes in an edge-weighted graph. We show that the kkMST problem is NP-hard even for points in the Euclidean plane. We provide approximation algorithms with performance ratio 2k2\sqrt{k} for the general edge-weighted case and O(k1/4)O(k^{1/4}) for the case of points in the plane. Polynomial-time exact solutions are also presented for the class of decomposable graphs which includes trees, series-parallel graphs, and bounded bandwidth graphs, and for points on the boundary of a convex region in the Euclidean plane. We also investigate the problem of finding short trees, and more generally, that of finding networks with minimum diameter. A simple technique is used to provide a polynomial-time solution for finding kk-trees of minimum diameter. We identify easy and hard problems arising in finding short networks using a framework due to T. C. Hu.Comment: 27 page

    INDEMICS: An Interactive High-Performance Computing Framework for Data Intensive Epidemic Modeling

    Get PDF
    We describe the design and prototype implementation of Indemics (_Interactive; Epi_demic; _Simulation;)—a modeling environment utilizing high-performance computing technologies for supporting complex epidemic simulations. Indemics can support policy analysts and epidemiologists interested in planning and control of pandemics. Indemics goes beyond traditional epidemic simulations by providing a simple and powerful way to represent and analyze policy-based as well as individual-based adaptive interventions. Users can also stop the simulation at any point, assess the state of the simulated system, and add additional interventions. Indemics is available to end-users via a web-based interface. Detailed performance analysis shows that Indemics greatly enhances the capability and productivity of simulating complex intervention strategies with a marginal decrease in performance. We also demonstrate how Indemics was applied in some real case studies where complex interventions were implemented

    Stochastic pump of interacting particles

    Full text link
    We consider the overdamped motion of Brownian particles, interacting via particle exclusion, in an external potential that varies with time and space. We show that periodic potentials that maintain specific position-dependent phase relations generate time-averaged directed current of particles. We obtain analytic results for a lattice version of the model using a recently developed perturbative approach. Many interesting features like particle-hole symmetry, current reversal with changing density, and system-size dependence of current are obtained. We propose possible experiments to test our predictions.Comment: 4 pages, 2 figure

    Bicriteria Network Design Problems

    Full text link
    We study a general class of bicriteria network design problems. A generic problem in this class is as follows: Given an undirected graph and two minimization objectives (under different cost functions), with a budget specified on the first, find a <subgraph \from a given subgraph-class that minimizes the second objective subject to the budget on the first. We consider three different criteria - the total edge cost, the diameter and the maximum degree of the network. Here, we present the first polynomial-time approximation algorithms for a large class of bicriteria network design problems for the above mentioned criteria. The following general types of results are presented. First, we develop a framework for bicriteria problems and their approximations. Second, when the two criteria are the same %(note that the cost functions continue to be different) we present a ``black box'' parametric search technique. This black box takes in as input an (approximation) algorithm for the unicriterion situation and generates an approximation algorithm for the bicriteria case with only a constant factor loss in the performance guarantee. Third, when the two criteria are the diameter and the total edge costs we use a cluster-based approach to devise a approximation algorithms --- the solutions output violate both the criteria by a logarithmic factor. Finally, for the class of treewidth-bounded graphs, we provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic programming. We show how these pseudopolynomial-time algorithms can be converted to fully polynomial-time approximation schemes using a scaling technique.Comment: 24 pages 1 figur

    Lightweight Object Detection Ensemble Framework for Autonomous Vehicles in Challenging Weather Conditions

    Get PDF
    The computer vision systems driving autonomous vehicles are judged by their ability to detect objects and obstacles in the vicinity of the vehicle in diverse environments. Enhancing this ability of a self-driving car to distinguish between the elements of its environment under adverse conditions is an important challenge in computer vision. For example, poor weather conditions like fog and rain lead to image corruption which can cause a drastic drop in object detection (OD) performance. The primary navigation of autonomous vehicles depends on the effectiveness of the image processing techniques applied to the data collected from various visual sensors. Therefore, it is essential to develop the capability to detect objects like vehicles and pedestrians under challenging conditions such as like unpleasant weather. Ensembling multiple baseline deep learning models under different voting strategies for object detection and utilizing data augmentation to boost the models' performance is proposed to solve this problem. The data augmentation technique is particularly useful and works with limited training data for OD applications. Furthermore, using the baseline models significantly speeds up the OD process as compared to the custom models due to transfer learning. Therefore, the ensembling approach can be highly effective in resource-constrained devices deployed for autonomous vehicles in uncertain weather conditions. The applied techniques demonstrated an increase in accuracy over the baseline models and were able to identify objects from the images captured in the adverse foggy and rainy weather conditions. The applied techniques demonstrated an increase in accuracy over the baseline models and reached 32.75% mean average precision (mAP) and 52.56% average precision (AP) in detecting cars in the adverse fog and rain weather conditions present in the dataset. The effectiveness of multiple voting strategies for bounding box predictions on the dataset is also demonstrated. These strategies help increase the explainability of object detection in autonomous systems and improve the performance of the ensemble techniques over the baseline models

    Documentation of Wild Edible Plants of Melghat Forest, Dist. Amravati, Maharashtra State, India

    Get PDF
    An ethnobotanical survey with respect to food plants showed that tribals depend much upon forest products for their various daily needs. Wild edible plants play a significant role in the sustenance of rural life in Melghat. The paper deals with documentation of 42 plant species belonging to 23 families consumed by the tribal and other locals of Melghat area, Dist. Amravati, Maharashtra, India. Plant name, Family, along with their part used, and method of preparation is discussed

    Gauge theory of Faddeev-Skyrme functionals

    Full text link
    We study geometric variational problems for a class of nonlinear sigma-models in quantum field theory. Mathematically, one needs to minimize an energy functional on homotopy classes of maps from closed 3-manifolds into compact homogeneous spaces G/H. The minimizers are known as Hopfions and exhibit localized knot-like structure. Our main results include proving existence of Hopfions as finite energy Sobolev maps in each (generalized) homotopy class when the target space is a symmetric space. For more general spaces we obtain a weaker result on existence of minimizers in each 2-homotopy class. Our approach is based on representing maps into G/H by equivalence classes of flat connections. The equivalence is given by gauge symmetry on pullbacks of G-->G/H bundles. We work out a gauge calculus for connections under this symmetry, and use it to eliminate non-compactness from the minimization problem by fixing the gauge.Comment: 34 pages, no figure

    Development of stability indicating assay method for the simultaneous estimation of Metformin hydrochloride and Glipizide by RP-HPLC method

    Get PDF
    A simple, sensitive an isocratic RP-HPLC method for the estimation of Metformin Hydrochloride (MET) and Glipizide (GPZ) in combined dosage form using Inertsil C8 column (250.6 mm, 5 ) in an isocratic mode with mobile phase comprising Acetonitrile: Water (70:30) and one drop of Triethylamine. The flow rate was 1.0 ml/min and effluent was monitored at 222 nm. The retention times were found to be 3.40 min for MET and 4.44 min for GPZ. The assay exhibited a linear dynamic range of 100-500 g/ml of MET and 1-5 g/mL for GPZ .The calibration curves were linear (r = 0.9985 for MET and r = 0.9955 for GPZ) over the entire linear range. Recovery was found to be 99.94 % + .17 for MET and 99.61 % + 0.89 for GPZ. % RSD of system precision were observed 0.0429 for MET and 0.7212 for GPZ
    corecore