13 research outputs found

    Screening of antioxidant properties of the apple juice using the front-face synchronous fluorescence and chemometrics

    Get PDF
    Fluorescence spectroscopy is gaining increasing attention in food analysis due to its higher sensitivity and selectivity as compared to other spectroscopic techniques. Synchronous scanning fluorescence technique is particularly useful in studies of multi-fluorophoric food samples, providing a further improvement of selectivity by reduction in the spectral overlapping and suppressing light-scattering interferences. Presently, we study the feasibility of the prediction of the total phenolics, flavonoids, and antioxidant capacity using front-face synchronous fluorescence spectra of apple juices. Commercial apple juices from different product ranges were studied. Principal component analysis (PCA) applied to the unfolded synchronous fluorescence spectra was used to compare the fluorescence of the entire sample set. The regression analysis was performed using partial least squares (PLS1 and PLS2) methods on the unfolded total synchronous and on the single-offset synchronous fluorescence spectra. The best calibration models for all of the studied parameters were obtained using the PLS1 method for the single-offset synchronous spectra. The models for the prediction of the total flavonoid content had the best performance; the optimal model was obtained for the analysis of the synchronous fluorescence spectra at Delta lambda = 110 nm (R (2) = 0.870, residual predictive deviation (RPD) = 2.7). The optimal calibration models for the prediction of the total phenolic content (Delta lambda = 80 nm, R (2) = 0.766, RPD = 2.0) and the total antioxidant capacity (Delta lambda = 70 nm, R (2) = 0.787, RPD = 2.1) had only an approximate predictive ability. These results demonstrate that synchronous fluorescence could be a useful tool in fast semi-quantitative screening for the antioxidant properties of the apple juices.info:eu-repo/semantics/publishedVersio

    Cloning of cDNA and chromosomal location of genes encoding the three types of subunits of the wheat tetrameric inhibitor of insect a-amylase

    Get PDF
    We have characterized three cDNA clones corresponding to proteins CM1, CM3 and CM16, which represent the three types of subunits of the wheat tetrameric inhibitor of insect -amylases. The deduced amino acid sequences of the mature polypeptides are homologous to those of the dimeric and monomeric -amylase inhibitors and of the trypsin inhibitors. The mature polypeptides are preceded by typical signal peptides. Southern blot analysis of appropriate aneuploids, using the cloned cDNAs as probes, has revealed the location of genes for subunits of the CM3 and of the CM16 type within a few kb of each other in chromosomes 4A, 4B and 4D, and those for the CM1 type of subunit in chromosomes 7A, 7B and 7D. Known subunits of the tetrameric inhibitor corresponding to genes from the B and D genomes have been previously characterized. No proteins of this class have been found to be encoded by the A genome in hexaploid wheat (genomes AA, BB, DD) or in diploid wheats (AA) and no anti -amylase activity has been detected in the latter, so that the A-genome genes must be either silent (pseudogenes) or expressed at a much lower level
    corecore