5,967 research outputs found

    Multilevel Double Loop Monte Carlo and Stochastic Collocation Methods with Importance Sampling for Bayesian Optimal Experimental Design

    Full text link
    An optimal experimental set-up maximizes the value of data for statistical inferences and predictions. The efficiency of strategies for finding optimal experimental set-ups is particularly important for experiments that are time-consuming or expensive to perform. For instance, in the situation when the experiments are modeled by Partial Differential Equations (PDEs), multilevel methods have been proven to dramatically reduce the computational complexity of their single-level counterparts when estimating expected values. For a setting where PDEs can model experiments, we propose two multilevel methods for estimating a popular design criterion known as the expected information gain in simulation-based Bayesian optimal experimental design. The expected information gain criterion is of a nested expectation form, and only a handful of multilevel methods have been proposed for problems of such form. We propose a Multilevel Double Loop Monte Carlo (MLDLMC), which is a multilevel strategy with Double Loop Monte Carlo (DLMC), and a Multilevel Double Loop Stochastic Collocation (MLDLSC), which performs a high-dimensional integration by deterministic quadrature on sparse grids. For both methods, the Laplace approximation is used for importance sampling that significantly reduces the computational work of estimating inner expectations. The optimal values of the method parameters are determined by minimizing the average computational work, subject to satisfying the desired error tolerance. The computational efficiencies of the methods are demonstrated by estimating the expected information gain for Bayesian inference of the fiber orientation in composite laminate materials from an electrical impedance tomography experiment. MLDLSC performs better than MLDLMC when the regularity of the quantity of interest, with respect to the additive noise and the unknown parameters, can be exploited

    Multiple Views Effective for Gait Recognition Based on Contours

    Get PDF
    Gait is one of well recognized biometrics that has been widely used for human identification. However, the current gait recognition might have difficulties due to viewing angle being changed. This is because the viewing angle under which the gait signature database was generated may not be the same as the viewing angle when the probe data are obtained. This paper present an effective multi-view gait recognition based on motion contour (MVGRMC) approach which tackles the problems mentioned above.  Initially the background modeling is done from a video sequence. Subsequently, the moving foreground objects in the individual image frames are segmented using the background subtraction algorithm. Then, the morphological skeleton operator is used to track the moving silhouettes of a walking , Finally, when a video sequence is fed, the proposed system recognizes the gait features and thereby humans, based on self-similarity measure. The proposed system is evaluated using gait databases and the experimentation on outdoor video sequences demonstrates that the proposed algorithm achieves a pleasing recognition performance. The proposed algorithm can significantly improve the multiple view gait recognition performance when being compared to the similar methods. These results are illustrated with practical examples on popular gait databases. Keywords: Gait Recognition; Biometric; silhouette; Motion analysis; Feature extractio

    Interactive volumetric segmentation for textile micro-tomography data using wavelets and nonlocal means

    Get PDF
    This work addresses segmentation of volumetric images of woven carbon fiber textiles from micro-tomography data. We propose a semi-supervised algorithm to classify carbon fibers that requires sparse input as opposed to completely labeled images. The main contributions are: (a) design of effective discriminative classifiers, for three-dimensional textile samples, trained on wavelet features for segmentation; (b) coupling of previous step with nonlocal means as simple, efficient alternative to the Potts model; and (c) demonstration of reuse of classifier to diverse samples containing similar content. We evaluate our work by curating test sets of voxels in the absence of a complete ground truth mask. The algorithm obtains an average 0.95 F1 score on test sets and average F1 score of 0.93 on new samples. We conclude with discussion of failure cases and propose future directions toward analysis of spatiotemporal high-resolution micro-tomography images

    Development of Web-Based Customers Service System in Hyperpanda Mall in Saudi Arabia

    Get PDF
    The main objective in this study is to develop a web-based system for HyperPanda Mall in Riyadh-Saudi Arabia. HyperPanda Mall offer a huge variety of goods and it is not easy for customers to always find the best offer that fulfill their needs, otherwise, it would cost them long time to search and more efforts. Therefore, this study focused to serve the customers by providing a customer service web-based to guide customers for shopping and purchasing items before going to the stores places, and they have the ability to know the latest products and promotions of the companies and help them to find suitable sales stores and offering best choices available. The system can access the database designed for the mall since this system has search options to find what customers are looking for. Moreover, it helps the companies' vendors who are looking to promote their services and products for their customers and raise their profits locally and internationally, and reach out their customers as much as possible and deliver the best satisfaction of services to their customers wherever they are. A questionnaire based on the Technology Acceptance Model technique has been adopted to ensure of the prototype level in terms of usefulness, satisfaction and easiness of use
    • …
    corecore