20 research outputs found
Catégorisation par mesures de dissimilitude et caractérisation d'images en multi échelle
Dans cette thèse, on introduit la métrique "Coefficient de forme" pour la classement des données de dissimilitudes. Cette approche est inspirée par l'analyse discriminante géométrique et on a défini des règles de décision pour imiter le comportement du classifieur linéaire et quadratique. Le nombre de paramètres est limité (deux par classe). On a également étendu et amélioré cette démarche avantageuse et rapide pour apprendre uniquement à partir des représentations de dissimilitudes en utilisant l'efficacité du classificateur des Machines à Vecteurs de Support. Comme contexte applicatif pour la classification par dissimilitudes, on utilise la recherche d'images à l'aide d'une représentation des images en multi échelle en utilisant la "Pyramide Réduite Différentielle". Une application pour la description de visages est développée. Des résultats de classification à partir du coefficient de forme et utilisant une version adaptée des Machines à Vecteurs de Support, sur des bases de données issues des applications du monde réel sont présentés et comparés avec d'autres méthodes de classement basées sur des dissimilitudes. Il en ressort une forte robustesse de la méthode proposée avec des perfommances supérieures ou égales aux algorithmes de l'état de l'art.The dissimilarity representation is an alternative for the use of features in the recognition of real world objects like images, spectra and time-signal. Instead of an absolute characterization of objects by a set of features, the expert or the system is asked to define a measure that estimates the dissimilarity between pairs of objects. Such a measure may also be defined for structural representations such as strings and graphs. The dissimilarity representation is potentially able to bridge structural and statistical pattern recognition. In this thesis we introduce a new fast Mahalanobis-like metric the Shape Coefficient for classification of dissimilarity data. Our approach is inspired by the Geometrical Discriminant Analysis and we have defined decision rules to mimic the behavior of the linear and quadratic classifier. The number of parameters is limited (two per class). We also expand and ameliorate this advantageous and rapid adaptive approach to learn only from dissimilarity representations by using the effectiveness of the Support Vector Machines classifier for real-world classification tasks. Several methods for incorporating dissimilarity representations are presented, investigated and compared to the Shape Coefficient in this thesis: Pekalska and Duin prototype dissimilarity based classifiers; Haasdonk's kernel based SVM classifier; KNN classifier. Numerical experiments on artificial and real data show interesting behavior compared to Support Vector Machines and to KNN classifier: (a) lower or equivalent error rate, (b) equivalent CPU time, (c) more robustness with sparse dissimilarity data. The experimental results on real world dissimilarity databases show that the Shape Coefficient can be an alternative approach to these known methods and can be as effective as them in terms of accuracy for classification.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
Classification by dissilimarity data and Multiresolution Image Analysis
Dans cette thèse, on introduit la métrique "Coefficient de forme" pour la classement des données de dissimilitudes. Cette approche est inspirée par l'analyse discriminante géométrique et on a défini des règles de décision pour imiter le comportement du classifieur linéaire et quadratique. Le nombre de paramètres est limité (deux par classe). On a également étendu et amélioré cette démarche avantageuse et rapide pour apprendre uniquement à partir des représentations de dissimilitudes en utilisant l'efficacité du classificateur des Machines à Vecteurs de Support. Comme contexte applicatif pour la classification par dissimilitudes, on utilise la recherche d'images à l'aide d'une représentation des images en multi échelle en utilisant la "Pyramide Réduite Différentielle". Une application pour la description de visages est développée. Des résultats de classification à partir du coefficient de forme et utilisant une version adaptée des Machines à Vecteurs de Support, sur des bases de données issues des applications du monde réel sont présentés et comparés avec d'autres méthodes de classement basées sur des dissimilitudes. Il en ressort une forte robustesse de la méthode proposée avec des perfommances supérieures ou égales aux algorithmes de l'état de l'art.The dissimilarity representation is an alternative for the use of features in the recognition of real world objects like images, spectra and time-signal. Instead of an absolute characterization of objects by a set of features, the expert or the system is asked to define a measure that estimates the dissimilarity between pairs of objects. Such a measure may also be defined for structural representations such as strings and graphs. The dissimilarity representation is potentially able to bridge structural and statistical pattern recognition. In this thesis we introduce a new fast Mahalanobis-like metric the “Shape Coefficient” for classification of dissimilarity data. Our approach is inspired by the Geometrical Discriminant Analysis and we have defined decision rules to mimic the behavior of the linear and quadratic classifier. The number of parameters is limited (two per class). We also expand and ameliorate this advantageous and rapid adaptive approach to learn only from dissimilarity representations by using the effectiveness of the Support Vector Machines classifier for real-world classification tasks. Several methods for incorporating dissimilarity representations are presented, investigated and compared to the “Shape Coefficient” in this thesis: • Pekalska and Duin prototype dissimilarity based classifiers; • Haasdonk's kernel based SVM classifier; • KNN classifier. Numerical experiments on artificial and real data show interesting behavior compared to Support Vector Machines and to KNN classifier: (a) lower or equivalent error rate, (b) equivalent CPU time, (c) more robustness with sparse dissimilarity data. The experimental results on real world dissimilarity databases show that the “Shape Coefficient” can be an alternative approach to these known methods and can be as effective as them in terms of accuracy for classification
Catégorisation par mesures de dissimilitude et caractérisation d'images en multi échelle
The dissimilarity representation is an alternative for the use of features in the recognition of real world objects like images, spectra and time-signal. Instead of an absolute characterization of objects by a set of features, the expert or the system is asked to define a measure that estimates the dissimilarity between pairs of objects. Such a measure may also be defined for structural representations such as strings and graphs. The dissimilarity representation is potentially able to bridge structural and statistical pattern recognition. In this thesis we introduce a new fast Mahalanobis-like metric the “Shape Coefficient” for classification of dissimilarity data. Our approach is inspired by the Geometrical Discriminant Analysis and we have defined decision rules to mimic the behavior of the linear and quadratic classifier. The number of parameters is limited (two per class). We also expand and ameliorate this advantageous and rapid adaptive approach to learn only from dissimilarity representations by using the effectiveness of the Support Vector Machines classifier for real-world classification tasks. Several methods for incorporating dissimilarity representations are presented, investigated and compared to the “Shape Coefficient” in this thesis: • Pekalska and Duin prototype dissimilarity based classifiers; • Haasdonk's kernel based SVM classifier; • KNN classifier. Numerical experiments on artificial and real data show interesting behavior compared to Support Vector Machines and to KNN classifier: (a) lower or equivalent error rate, (b) equivalent CPU time, (c) more robustness with sparse dissimilarity data. The experimental results on real world dissimilarity databases show that the “Shape Coefficient” can be an alternative approach to these known methods and can be as effective as them in terms of accuracy for classification.Dans cette thèse, on introduit la métrique "Coefficient de forme" pour la classement des données de dissimilitudes. Cette approche est inspirée par l'analyse discriminante géométrique et on a défini des règles de décision pour imiter le comportement du classifieur linéaire et quadratique. Le nombre de paramètres est limité (deux par classe). On a également étendu et amélioré cette démarche avantageuse et rapide pour apprendre uniquement à partir des représentations de dissimilitudes en utilisant l'efficacité du classificateur des Machines à Vecteurs de Support. Comme contexte applicatif pour la classification par dissimilitudes, on utilise la recherche d'images à l'aide d'une représentation des images en multi échelle en utilisant la "Pyramide Réduite Différentielle". Une application pour la description de visages est développée. Des résultats de classification à partir du coefficient de forme et utilisant une version adaptée des Machines à Vecteurs de Support, sur des bases de données issues des applications du monde réel sont présentés et comparés avec d'autres méthodes de classement basées sur des dissimilitudes. Il en ressort une forte robustesse de la méthode proposée avec des perfommances supérieures ou égales aux algorithmes de l'état de l'art
Une nouvelle métrique pour l'analyse discriminante sur données de dissimilitude
National audienceStatistical pattern recognition traditionally relies on a features based representation. For many applications, such vector representation is not available and we have only proximity data (distance, dissimilarity, similarity, ranks ...). In this paper, we consider a particular point of view on discriminant analysis from dissimilarity data. Our approach is inspired by the Mahalanobis distance. We define decision rules to mimic the behaviour of a linear or a quadratic Gaussian classifier. The number of parameter is limited (two per class). Numerical experiments on real data show an interesting behaviour compared to a KNN classifier (i) lower or equivalent error rate, (ii) better robustness with sparse dissimilarity data
Classification of dissimilarity data with a new flexible Mahalanobis-like metric
International audienceStatistical pattern recognition traditionally relies on features-based representation. For many applications, such vector representation is not available and we only possess proximity data (distance, dissimilarity, similarity, ranks ...). In this paper, we consider a particular point of view on discriminant analysis from dissimilarity data. Our approach is inspired by the Gaussian classifier and we defined decision rules to mimic the behavior of a linear or a quadratic classifier. The number of parameters is limited (two per class). Numerical experiments on artificial and real data show interesting behavior compared to Support Vector Machines and to kNN classifier (i) lower or equivalent error rate, (ii) equivalent CPU time, (iii) more robustness with sparse dissimilarity data
A new metric for dissimilarity data classification based on Support Vector Machines optimization
6 pagesInternational audienceDissimilarities are extremely useful in many real-world pattern classification problems, where the data resides in a complicated, complex space, and it can be very difficult, if not impossible, to find useful feature vector representations. In these cases a dissimilarity representation may be easier to come by. The goal of this work is to provide a new technique based on Support Vector Machines (SVM) optimization that can be a good alternative in terms of accuracy compared to known methods using dissimilarities such as k nearest neighbor classifier (kNN), prototype-based dissimilarity classifiers and distance kernel based SVM classifiers
Deep Learning for Reduced Sampling Spatial 3-D REM Reconstruction
Radio environment maps (REMs) have been established as an important tool in spectrum occupancy characterization toward more efficient coverage planning and design of resource allocation algorithms. The utilization of deep learning (DL) techniques for REM reconstruction, particularly when working with a limited number of samples, has garnered significant research attention owing to its speed and accuracy. This is particularly relevant for spatial three-dimensional REMs, which involve an exponential increase in the number of samples compared to the two-dimensional case. This paper presents a method for determining the optimal sampling grid resolution based on two key criteria, 1) the generated map’s similarity to the covariance matrix mean (CMM) of measurements collected in real world (RW) scenarios, and 2) reduced computational complexity. Subsequently, three prominent DL models for REM reconstruction, are evaluated, with the convolutional autoencoder (CAE) achieving the best performance. To enhance its accuracy, a neural network (NN) design approach is introduced, which involves assessing the difference in CMM between the original example and the output for each layer in the NN architecture. This method identifies the layers that introduce the smallest difference and determines their optimal number of filters. Thus, the model’s complexity is reduced, and the accuracy is improved. Normalized root mean square error of as little as −35 dB is achieved for a sampling rate of 30%
Challenges in Implementing Low-Latency Holographic-Type Communication Systems
Holographic-type communication (HTC) permits new levels of engagement between remote users. It is anticipated that it will give a very immersive experience while enhancing the sense of spatial co-presence. In addition to the newly revealed advantages, however, stringent system requirements are imposed, such as multi-sensory and multi-dimensional data capture and reproduction, ultra-lightweight processing, ultra-low-latency transmission, realistic avatar embodiment conveying gestures and facial expressions, support for an arbitrary number of participants, etc. In this paper, we review the current limitations to the HTC system implementation and systemize the main challenges into a few major groups. Furthermore, we propose a conceptual framework for the realization of an HTC system that will guarantee the desired low-latency transmission, lightweight processing, and ease of scalability, all accompanied with a higher level of realism in human body appearance and dynamics
Application of a 3D Talking Head as Part of Telecommunication AR, VR, MR System: Systematic Review
In today’s digital era, the realms of virtual reality (VR), augmented reality (AR), and mixed reality (MR) collectively referred to as extended reality (XR) are reshaping human–computer interactions. XR technologies are poised to overcome geographical barriers, offering innovative solutions for enhancing emotional and social engagement in telecommunications and remote collaboration. This paper delves into the integration of (AI)-powered 3D talking heads within XR-based telecommunication systems. These avatars replicate human expressions, gestures, and speech, effectively minimizing physical constraints in remote communication. The contributions of this research encompass an extensive examination of audio-driven 3D head generation methods and the establishment of comprehensive evaluation criteria for 3D talking head algorithms within Shared Virtual Environments (SVEs). As XR technology evolves, AI-driven 3D talking heads promise to revolutionize remote collaboration and communication
Limited Sampling Spatial Interpolation Evaluation for 3D Radio Environment Mapping
The increasing densification and diversification of modern and upcoming wireless networks have become an important motivation for the development of agile spectrum sharing. Radio environment maps (REMs) are a basic tool for spectrum utilisation characterisation and adaptive resource allocation, but they need to be estimated through accurate interpolation methods. This work evaluated the performance of two established algorithms for spatial three-dimensional (3D) data collected in two real-world scenarios: indoors, through a mechanical measuring system, and outdoors, through an unmanned aerial vehicle (UAV) for measurement collection. The investigation was undertaken for the complete dataset on two-dimensional (2D) planes of different altitudes and for a subset of limited samples (representing the regions of interest or RoIs), which were combined together to describe the spatial 3D environment. A minimum error of −9.5 dB was achieved for a sampling ratio of 21%. The methods’ performance and the input data were analysed through the resulting Kriging error standard deviation (STD) and the STD of the distances between the measurement and the estimated points. Based on the results, several challenges for the interpolation performance and the analysis of the spatial RoIs are described. They facilitate the future development of 3D spectrum occupancy characterisation in indoor and UAV-based scenarios