29,201 research outputs found

    The design of supercritical wings by the use of three-dimensional transonic theory

    Get PDF
    A procedure was developed for the design of transonic wings by the iterative use of three dimensional, inviscid, transonic analysis methods. The procedure was based on simple principles of supersonic flow and provided the designer with a set of guidelines for the systematic alteration of wing profile shapes to achieve some desired pressure distribution. The method was generally applicable to wing design at conditions involving a large region of supercriterical flow. To illustrate the method, it was applied to the design of a wing for a supercritical maneuvering fighter that operates at high lift and transonic Mach number. The wing profiles were altered to produce a large region of supercritical flow which was terminated by a weak shock wave. The spanwise variation of drag of this wing and some principles for selecting the streamwise pressure distribution are also discussed

    Theoretical estimation of the transonic aerodynamic characteristics of a supercritical-wing transport model with trailing-edge controls

    Get PDF
    A method for rapidly estimating the overall forces and moments at supercritical speeds, below drag divergence, of transport configurations with supercritical wings is presented. The method was also used for estimating the rolling moments due to the deflection of wing trailing-edge controls. This analysis was based on a vortex-lattice technique modified to approximate the effects of wing thickness and boundary-layer induced camber. Comparisons between the results of this method and experiment indicate reasonably good correlation of the lift, pitching moment, and rolling moment. The method required much less storage and run time to compute solutions over an angle-of-attack range than presently available transonic nonlinear methods require for a single angle-of-attack solution

    Quasiclassical Coarse Graining and Thermodynamic Entropy

    Get PDF
    Our everyday descriptions of the universe are highly coarse-grained, following only a tiny fraction of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics is made natural by our limited powers of observation and computation. But in the modern quantum mechanics of closed systems, some measure of coarse graining is inescapable because there are no non-trivial, probabilistic, fine-grained descriptions. This essay explores the consequences of that fact. Quantum theory allows for various coarse-grained descriptions some of which are mutually incompatible. For most purposes, however, we are interested in the small subset of ``quasiclassical descriptions'' defined by ranges of values of averages over small volumes of densities of conserved quantities such as energy and momentum and approximately conserved quantities such as baryon number. The near-conservation of these quasiclassical quantities results in approximate decoherence, predictability, and local equilibrium, leading to closed sets of equations of motion. In any description, information is sacrificed through the coarse graining that yields decoherence and gives rise to probabilities for histories. In quasiclassical descriptions, further information is sacrificed in exhibiting the emergent regularities summarized by classical equations of motion. An appropriate entropy measures the loss of information. For a ``quasiclassical realm'' this is connected with the usual thermodynamic entropy as obtained from statistical mechanics. It was low for the initial state of our universe and has been increasing since.Comment: 17 pages, 0 figures, revtex4, Dedicated to Rafael Sorkin on his 60th birthday, minor correction

    Decoherent Histories Quantum Mechanics with One 'Real' Fine-Grained History

    Get PDF
    Decoherent histories quantum theory is reformulated with the assumption that there is one "real" fine-grained history, specified in a preferred complete set of sum-over-histories variables. This real history is described by embedding it in an ensemble of comparable imagined fine-grained histories, not unlike the familiar ensemble of statistical mechanics. These histories are assigned extended probabilities, which can sometimes be negative or greater than one. As we will show, this construction implies that the real history is not completely accessible to experimental or other observational discovery. However, sufficiently and appropriately coarse-grained sets of alternative histories have standard probabilities providing information about the real fine-grained history that can be compared with observation. We recover the probabilities of decoherent histories quantum mechanics for sets of histories that are recorded and therefore decohere. Quantum mechanics can be viewed as a classical stochastic theory of histories with extended probabilities and a well-defined notion of reality common to all decoherent sets of alternative coarse-grained histories.Comment: 11 pages, one figure, expanded discussion and acknowledgment

    Accelerated/abbreviated test methods, study 4 of task 3 (encapsulation) of the low-cost silicon solar array project

    Get PDF
    Inherent weatherability is controlled by the three weather factors common to all exposure sites: insolation, temperature, and humidity. Emphasis was focused on the transparent encapsulant portion of miniature solar cell arrays by eliminating weathering effects on the substrate and circuitry (which are also parts of the encapsulant system). The most extensive data were for yellowing, which were measured conveniently and precisely. Considerable data also were obtained on tensile strength. Changes in these two properties after outdoor exposure were predicted very well from accelerated exposure data

    Probing minimal supergravity in the type-I seesaw mechanism with lepton flavour violation at the CERN LHC

    Get PDF
    The most general supersymmetric seesaw mechanism has too many parameters to be predictive and thus can not be excluded by any measurements of lepton flavour violating (LFV) processes. We focus on the simplest version of the type-I seesaw mechanism assuming minimal supergravity boundary conditions. We compute branching ratios for the LFV scalar tau decays, τ~2→(e,μ)+χ10{\tilde \tau}_2 \to (e,\mu) + \chi^0_1, as well as loop-induced LFV decays at low energy, such as li→lj+γl_i \to l_j + \gamma and li→3ljl_i \to 3 l_j, exploring their sensitivity to the unknown seesaw parameters. We find some simple, extreme scenarios for the unknown right-handed parameters, where ratios of LFV branching ratios correlate with neutrino oscillation parameters. If the overall mass scale of the left neutrinos and the value of the reactor angle were known, the study of LFV allows, in principle, to extract information about the so far unknown right-handed neutrino parameters.Comment: 29 pages, 27 figures; added explanatory comments, corrected typos, final version for publicatio
    • …
    corecore