859 research outputs found

    The Role of Exercise on L-Arginine Nitric Oxide Pathway in Chronic Heart Failure

    Get PDF
    Chronic heart failure (CHF) is a pathological state with high morbidity and mortality and the full understanding of its genesis remain to be elucidated. In this syndrome, a cascade of neurohormonal and hemodynamic mechanisms, as well as inflammatory mediators, are activated to improve the impaired cardiac function. Clinical and experimental observations have shown that CHF is associated with a generalized disturbance in endothelium-dependent vasodilation, which may contribute to the progression of ventricular and vascular remodelling in this syndrome. There is also accumulating evidence that disturbances in nitric oxide (NO) availability is involved in the development of heart failure at the systemic and cardiac levels. NO is a ubiquitous signalling molecule which causes potent vasodilation, inhibits platelet activation and regulates the contractile properties of cardiac myocytes. It is generated from the amino acid L-arginine via constitutive and inducible isoforms of the enzyme NO synthase (NOS). There is evidence that exercise, a nonpharmacological tool, improves symptoms, fitness (VO2peak), quality of life and NO bioavailability in CHF population. This review examines different aspects of the L-arginine-NO pathway and inflammation in the physiopathology of CHF and highlights the important beneficial effects of exercise in this disease

    Zodiacal Exoplanets in Time (ZEIT). V. A Uniform Search for Transiting Planets in Young Clusters Observed by K2

    Get PDF
    Detection of transiting exoplanets around young stars is more difficult than for older systems owing to increased stellar variability. Nine young open cluster planets have been found in the K2 data, but no single analysis pipeline identified all planets. We have developed a transit search pipeline for young stars that uses a transit-shaped notch and quadratic continuum in a 12 or 24 hr window to fit both the stellar variability and the presence of a transit. In addition, for the most rapid rotators ( days) we model the variability using a linear combination of observed rotations of each star. To maximally exploit our new pipeline, we update the membership for four stellar populations observed by K2 (Upper Scorpius, Pleiades, Hyades, Praesepe) and conduct a uniform search of the members. We identify all known transiting exoplanets in the clusters, 17 eclipsing binaries, one transiting planet candidate orbiting a potential Pleiades member, and three orbiting unlikely members of the young clusters. Limited injection recovery testing on the known planet hosts indicates that for the older Praesepe systems we are sensitive to additional exoplanets as small as 1-2 R ⊕, and for the larger Upper Scorpius planet host (K2-33) our pipeline is sensitive to ∼4 R ⊕ transiting planets. The lack of detected multiple systems in the young clusters is consistent with the expected frequency from the original Kepler sample, within our detection limits. With a robust pipeline that detects all known planets in the young clusters, occurrence rate testing at young ages is now possible

    THE MASS-RADIUS RELATION OF YOUNG STARS. I. USCO 5, AN M4.5 ECLIPSING BINARY IN UPPER SCORPIUS OBSERVED BY K2

    Get PDF
    We present the discovery that UScoCTIO 5, a known spectroscopic binary in the Upper Scorpius star-forming region (P = 34 days, Mtot sin(i) = 0.64 M⊙), is an eclipsing system with both primary and secondary eclipses apparent in K2 light curves obtained during Campaign 2. We have simultaneously fit the eclipse profiles from the K2 light curves and the existing RV data to demonstrate that UScoCTIO 5 consists of a pair of nearly identical M4.5 stars with MA = 0.329 ± 0.002 M⊙, RA = 0.834 ± 0.006 R⊙, MB = 0.317 ± 0.002 M⊙, and RB = 0.810 ± 0.006 R⊙. The radii are broadly consistent with pre-main-sequence ages predicted by stellar evolutionary models, but none agree to within the uncertainties. All models predict systematically incorrect masses at the 25%-50% level for the HR diagram position of these mid-M dwarfs, suggesting significant modifications to mass-dependent outcomes of star and planet formation. The form of the discrepancy for most model sets is not that they predict luminosities that are too low, but rather that they predict temperatures that are too high, suggesting that the models do not fully encompass the physics of energy transport (via convection and/or missing opacities) and/or a miscalibration of the SpT-Teff scale. The simplest modification to the models (changing Teff to match observations) would yield an older age for this system, in line with the recently proposed older age of Upper Scorpius (τ ∼ 11 Myr)

    Expression and function of the luteinizing hormone choriogonadotropin receptor in human endometrial stromal cells

    Get PDF
    The human luteinising hormone choriogonadotropin receptor (LHCGR) is a G-protein coupled receptor activated by both human chorionic gonadotropin (hCG) and luteinizing hormone (LH), two structurally related gonadotropins with essential roles in ovulation and maintenance of the corpus luteum. LHCGR expression predominates in ovarian tissues where it elicits functional responses through cyclic adenosine mononucleotide (cAMP), Ca2+ and extracellular signal-regulated kinase (ERK) signalling. LHCGR expression has also been localized to the human endometrium, with purported roles in decidualization and implantation. However, these observations are contentious. In this investigation, transcripts encoding LHCGR were undetectable in bulk RNA sequencing datasets from whole cycling endometrial tissue and cultured human endometrial stromal cells (EnSC). However, analysis of single-cell RNA sequencing data revealed cell-to-cell transcriptional heterogeneity, and we identified a small subpopulation of stromal cells with detectable LHCGR transcripts. In HEK-293 cells expressing recombinant LHCGR, both hCG and LH elicited robust cAMP, Ca2+ and ERK signals that were absent in wild-type HEK-293 cells. However, none of these responses were recapitulated in primary EnSC cultures. In addition, proliferation, viability and decidual transformation of EnSC were refractory to both hCG and LH, irrespective of treatment to induce differentiation. Although we challenge the assertion that LHCGR is expressed at a functionally active level in the human endometrium, the discovery of a discrete subpopulation of EnSC that express LHCGR transcripts may plausibly account for the conflicting evidence in the literature

    Chameleon Gravity, Electrostatics, and Kinematics in the Outer Galaxy

    Full text link
    Light scalar fields are expected to arise in theories of high energy physics (such as string theory), and find phenomenological motivations in dark energy, dark matter, or neutrino physics. However, the coupling of light scalar fields to ordinary (or dark) matter is strongly constrained from laboratory, solar system, and astrophysical tests of fifth force. One way to evade these constraints in dense environments is through the chameleon mechanism, where the field's mass steeply increases with ambient density. Consequently, the chameleonic force is only sourced by a thin shell near the surface of dense objects, which significantly reduces its magnitude. In this paper, we argue that thin-shell conditions are equivalent to "conducting" boundary conditions in electrostatics. As an application, we use the analogue of the method of images to calculate the back-reaction (or self-force) of an object around a spherical gravitational source. Using this method, we can explicitly compute the violation of equivalence principle in the outskirts of galactic haloes (assuming an NFW dark matter profile): Intermediate mass satellites can be slower than their larger/smaller counterparts by as much as 10% close to a thin shell.Comment: 17 pages, 3 figure

    TESTING the BINARY TRIGGER HYPOTHESIS in FUors

    Get PDF
    We present observations of three FU Orionis objects (hereafter, FUors) with nonredundant aperture-mask interferometry at 1.59 μm and 2.12 μm that probe for binary companions on the scale of the protoplanetary disk that feeds their accretion outbursts. We do not identify any companions to V1515 Cyg or HBC 722, but we do resolve a close binary companion to V1057 Cyg that is at the diffraction limit ( mas or 30 5 au) and currently much fainter than the outbursting star ( mag). Given the flux excess of the outbursting star, we estimate that the mass of the companion () is similar to or slightly below that of the FUor itself, and therefore it resembles a typical T Tauri binary system. Our observations only achieve contrast limits of mag, and hence we are only sensitive to companions that were near or above the pre-outburst luminosity of the FUors. It remains plausible that FUor outbursts could be tied to the presence of a close binary companion. However, we argue from the system geometry and mass reservoir considerations that these outbursts are not directly tied to the orbital period (i.e., occurring at periastron passage), but instead must only occur infrequently

    Orbital architectures of planet-hosting binaries - II. Low mutual inclinations between planetary and stellar orbits

    Get PDF
    Planet formation is often considered in the context of one circumstellar disc around one star. Yet, stellar binary systems are ubiquitous, and thus a substantial fraction of all potential planets must form and evolve in more complex, dynamical environments. We present the results of a 5 yr astrometric monitoring campaign studying 45 binary star systems that host Kepler planet candidates. The planet-forming environments in these systems would have literally been shaped by the binary orbits that persist to the present day. Crucially, the mutual inclinations of star-planet orbits can only be addressed by a statistical sample. We describe in detail our sample selection and Keck/NIRC2 laser guide star adaptive optics observations collected from 2012 to 2017. We measure orbital arcs, with a typical accuracy of ∼0.1 mas yr-1, that test whether the binary orbits tend to be aligned with the edge-on transiting planet orbits. We rule out randomly distributed binary orbits at 4.7σ, and we show that low mutual inclinations are required to explain the observed orbital arcs. If the stellar orbits have a field binary-like eccentricity distribution, then the best match to our observed orbital arcs is a distribution of mutual inclinations ranging from 0° to 30°. We discuss the implications of such widespread planet-binary alignment in the theoretical context of planet formation and circumstellar disc evolution

    Nutty Bubbles

    Get PDF
    We investigate the various time-dependent bubble spacetimes that can be obtained from double analytic continuation of asymptotically locally flat/AdS spacetimes with NUT charge. We find different time-dependent explicit solutions of general relativity from double analytic continuations of Taub-Nut(-AdS) and Kerr-Nut(-AdS) spacetimes. One solution in particular has Milne-like evolution throughout, and another is a NUT-charged generalization of the AdS soliton. These solutions are all four dimensional. In certain situations the NUT charge induces an ergoregion into the bubble spacetime and in other situations it quantitatively modifies the evolution of the bubble, as when rotation is present. In dimensions greater than four, no consistent bubble solutions are found that have only one timelike direction.Comment: 29 pages, 10 figure

    Quantum circuits for spin and flavor degrees of freedom of quarks forming nucleons

    Full text link
    We discuss the quantum-circuit realization of the state of a nucleon in the scope of simple symmetry groups. Explicit algorithms are presented for the preparation of the state of a neutron or a proton as resulting from the composition of their quark constituents. We estimate the computational resources required for such a simulation and design a photonic network for its implementation. Moreover, we highlight that current work on three-body interactions in lattices of interacting qubits, combined with the measurement-based paradigm for quantum information processing, may also be suitable for the implementation of these nucleonic spin states.Comment: 5 pages, 2 figures, RevTeX4; Accepted for publication in Quantum Information Processin

    Optical properties of dust

    Get PDF
    http://arxiv.org/abs/0808.4123Except in a few cases cosmic dust can be studied in situ or in terrestrial laboratories, essentially all of our information concerning the nature of cosmic dust depends upon its interaction with electromagnetic radiation. This chapter presents the theoretical basis for describing the optical properties of dust -- how it absorbs and scatters starlight and reradiates the absorbed energy at longer wavelengths.Partial support by a Chandra Theory program and HST Theory Programs is gratefully acknowledged
    • …
    corecore