514 research outputs found

    The Spin Structure of the Nucleon

    Full text link
    The present status of the nucleon's spin structure is reviewed with emphasis on new experimental results.Comment: Invited talk presented at the XIX International Symposium on Lepton and Photon Interactions, Stanford University, August 9-14, 1999, 16 pages, 15 figure

    Why there is no crisis of the "spin crisis"

    Full text link
    In a recent eprint [1] it is argued that the experimental determinations of the spin-dependent structure function g1 have been done incorrectly and that a reanalysis of those data suggests that the original motivation to argue fora "spin crisis", namely the small contribution of quark spins to the nucleon spin, is invalid. In a subsequent note [2] the theoretical understanding, as it has evolved from almost 30 years of theoretical and experimental scrutiny, has been shortly summarised. In this short note, arguments are presented that the line of reasoning in Ref. [1] does not apply, at least not for the Compass data.Comment: 2 pages, no figure

    Spin Physics with COMPASS

    Get PDF
    The recently proposed COMPASS experiment at CERN attempts a measurement of the gluon polarisation with a precision of delta(Delta g/g) = 0.1. The experiment uses open charm muoproduction to tag the photon-gluon fusion process

    Measurements of Delta G/G

    Full text link
    Our present information on the gluon polarisation Delta g/g is reviewed. The data from fixed-target lepton-nucleon experiments are in context with the recent data from the RHIC polarised pp collider. The main tools to study Delta g/g in lepton-nucleon scattering are scaling violations of the g_1 structure functions and longitudinal spin asymmetries in hadron production. Results from high-p_T hadron pairs, inclusive hadrons as well as open-charm production are discussed. At RHIC the most precise data presently came from inclusive pi^0 and jet production. All data indicate that the gluon polarisation is small compared to earlier expectations, but still can make a major contribution to the nucleon spin.Comment: Proceedings for SPIN2006, Kyot

    Distinguishing Supersymmetry From Universal Extra Dimensions or Little Higgs Models With Dark Matter Experiments

    Get PDF
    There are compelling reasons to think that new physics will appear at or below the TeV-scale. It is not known what form this new physics will take, however. Although The Large Hadron collider is very likely to discover new particles associated with the TeV-scale, it may be difficult for it to determine the nature of those particles, whether superpartners, Kaluza-Klein modes or other states. In this article, we consider how direct and indirect dark matter detection experiments may provide information complementary to hadron colliders, which can be used to discriminate between supersymmetry, models with universal extra dimensions, and Little Higgs theories. We find that, in many scenarios, dark matter experiments can be effectively used to distinguish between these possibilities.Comment: 23 pages, 7 figures, references added in version

    Kaluza-Klein Dark Matter: Direct Detection vis-a-vis LHC

    Get PDF
    We explore the phenomenology of Kaluza-Klein (KK) dark matter in very general models with universal extra dimensions (UEDs), emphasizing the complementarity between high-energy colliders and dark matter direct detection experiments. In models with relatively small mass splittings between the dark matter candidate and the rest of the (colored) spectrum, the collider sensitivity is diminished, but direct detection rates are enhanced. UEDs provide a natural framework for such mass degeneracies. We consider both 5-dimensional and 6-dimensional non-minimal UED models, and discuss the detection prospects for various KK dark matter candidates: the KK photon γ1\gamma_1, the KK ZZ-boson Z1Z_1, the KK Higgs boson H1H_1 and the spinless KK photon γH\gamma_H. We combine collider limits such as electroweak precision data and expected LHC reach, with cosmological constraints from WMAP, and the sensitivity of current or planned direct detection experiments. Allowing for general mass splittings, we show that neither colliders, nor direct detection experiments by themselves can explore all of the relevant KK dark matter parameter space. Nevertheless, they probe different parameter space regions, and the combination of the two types of constraints can be quite powerful. For example, in the case of γ1\gamma_1 in 5D UEDs the relevant parameter space will be almost completely covered by the combined LHC and direct detection sensitivities expected in the near future.Comment: 52 pages, 29 figure

    Gluon polarization in the proton

    Get PDF
    We combine heavy-quark renormalization group arguments with our understanding of the nucleon's wavefunction to deduce a bound on the gluon polarization Delta g in the proton. The bound is consistent with the values extracted from spin experiments at COMPASS and RHIC.Comment: 4 page

    Kaluza-Klein Dark Matter

    Get PDF
    We propose that cold dark matter is made of Kaluza-Klein particles and explore avenues for its detection. The lightest Kaluza-Klein state is an excellent dark matter candidate if standard model particles propagate in extra dimensions and Kaluza-Klein parity is conserved. We consider Kaluza-Klein gauge bosons. In sharp contrast to the case of supersymmetric dark matter, these annihilate to hard positrons, neutrinos and photons with unsuppressed rates. Direct detection signals are also promising. These conclusions are generic to bosonic dark matter candidates.Comment: 4 pages, 3 figures, discussion of spin-independent cross section clarified, references added, published versio

    Exploring the polarization of gluons in the nucleon

    Get PDF
    We give an overview of the current status of investigations of the polarization of gluons in the nucleon. We describe some of the physics of the spin-dependent gluon parton distribution and its phenomenology in high-energy polarized hadronic scattering. We also review the recent experimental results.Comment: 10 pages, 13 figures. Talk presented at the "Second Meeting of the APS Topical Group on Hadronic Physics", Nashville, Tennessee, October 22-24, 2006. Reference adde

    On dark matter search after DAMA with Ge-73

    Full text link
    The Weakly Interacting Massive Particle (WIMP) is one of the main candidates for the relic dark matter (DM).In the effective low-energy minimal supersymmetric standard model (effMSSM) the neutralino-nucleon spin and scalar cross sections in the low-mass regime were calculated. The calculated cross sections are compared with almost all experimental currently available exclusion curves for spin-dependent WIMP-proton and WIMP-neutron cross sections. It is demonstrated that in general about two-orders-of-magnitude improvement of the current DM experiment sensitivities is needed to reach the (effMSSM) SUSY predictions. At the current level of accuracy it looks reasonable to safely neglect sub-dominant spin WIMP-nucleon contributions analyzing the data from spin-non-zero targets. To avoid misleading discrepancies between data and SUSY calculations it is, however, preferable to use a mixed spin-scalar coupling approach.This approach is applied to estimate future prospects of experiments with the odd-neutron high-spin isotope Ge-73. It is noticed that the DAMA evidence favors the light Higgs sector in the effMSSM, a high event rate in a Ge-73 detector and relatively high upgoing muon fluxes from relic neutralino annihilations in the Earth and the Sun.Comment: 29 pages, 12 figures, 124 reference
    corecore