7 research outputs found

    GRAPEVINE VIRUS DISEASES:ECONOMIC IMPACT AND CURRENT ADVANCES IN VIRAL PROSPECTION AND MANAGEMENT

    Full text link

    Genetic variation of eggplant mottled dwarf virus from annual and perennial plant hosts

    No full text
    The genetic diversity of eggplant mottled dwarf virus (EMDV), a member of the family Rhabdoviridae, was studied using isolates collected from different herbaceous and woody plant species and remote geographic areas. Sequences corresponding to the N, X, P, Y, M and G ORFs as well as the untranslated regions (UTRs) between ORFs were determined from all isolates. Low genetic diversity was found in almost all genomic regions studied except for the X ORF and the UTRs, which were more variable, while interestingly, an EMDV isolate from caper possessed a truncated G gene sequence. Furthermore, low dN/dS ratios, indicative of purifying selection, were calculated for all genes. Phylogenetic analysis showed that the EMDV isolates clustered in three distinct subgroups based on their geographical origin, with the exception of one subgroup that consisted of isolates from northern Greece and Cyprus. Overall, the level of genetic diversity of EMDV differed between seed- and asexually propagated plants in our collection, and this could be related to the mode of transmission. © 2015, Springer-Verlag Wien

    Diverse amino acid changes at specific positions in the N-terminal region of the coat protein allow plum pox virus to adapt to new hosts

    No full text
    Plum pox virus (PPV)-D and PPV-R are two isolates from strain D of PPV that differ in host specificity. Previous analyses of chimeras originating from PPV-R and PPV-D suggested that the N terminus of the coat protein (CP) includes host-specific pathogenicity determinants. Here, these determinants were mapped precisely by analyzing the infectivity in herbaceous and woody species of chimeras containing a fragment of the 3' region of PPV-D (including the region coding for the CP) in a PPV-R backbone. These chimeras were not infectious in Prunus persica, but systemically infected Nicotiana clevelandii and N. benthamiana when specific amino acids were modified or deleted in a short 30-amino-acid region of the N terminus of the CP. Most of these mutations did not reduce PPV fitness in Prunus spp. although others impaired systemic infection in this host. We propose a model in which the N terminus of the CP, highly relevant for virus systemic movement, is targeted by a host defense mechanism in Nicotiana spp. Mutations in this short region allow PPV to overcome the defense response in this host but can compromise the efficiency of PPV systemic movement in other hosts such as Prunus spp. © 2013 The American Phytopathological Society.This work was supported by grants BIO2010-18541 from Spanish MEC (Ministry of Economy and Competitiveness), SAL/0185/2006 from Comunidad de Madrid, and KBBE-204429 from the European Union. B.Peer Reviewe

    Virus variants with differences in the p1 protein coexist in a plum pox virus population and display particular host-dependent pathogenicity features

    No full text
    Subisolates segregated from an M-type Plum pox virus (PPV) isolate, PPV-PS, differ widely in pathogenicity despite their high degree of sequence similarity. A single amino acid substitution, K109E, in the helper component proteinase (HCPro) protein of PPV caused a significant enhancement of symptom severity in herbaceous hosts, and notably modified virus infectivity in peach seedlings. The presence of this substitution in certain subisolates that induced mild symptoms in herbaceous hosts and did not infect peach seedlings suggested the existence of uncharacterized attenuating factors in these subisolates. In this study, we show that two amino acid changes in the P1 protein are specifically associated with the mild pathogenicity exhibited by some PS subisolates. Site-directed mutagenesis studies demonstrated that both substitutions, W29R and V139E, but especially W29R, resulted in lower levels of virus accumulation and symptom severity in a woody host, Prunus persica. Furthermore, when W29R and V139E mutations were expressed concomitantly, PPV infectivity was completely abolished in this host. In contrast, the V139E substitution, but not W29R, was found to be responsible for symptom attenuation in herbaceous hosts. Deep sequencing analysis demonstrated that the W29R and V139E heterogeneities already existed in the original PPV-PS isolate before its segregation in different subisolates by local lesion cloning. These results highlight the potential complexity of potyviral populations and the relevance of the P1 protein of potyviruses in pathogenesis and viral adaptation to the host. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.This work was supported by grants BIO2010-18541 from the Spanish Ministerio de Educación y Ciencia (MEC), SAL/0185/2006 from Comunidad de Madrid and KBBE-204429 from the European UnionPeer Reviewe
    corecore