647 research outputs found

    The origin and significance of euhedral apatite crystals on conodonts

    Get PDF
    Crystal overgrowth on fossil remains is well-documented in the literature. Attention has specifically focused on bioapatite (i.e., an apatite of biochemical origin regardless of post-mortem changes) configurations, in order to decipher any possible relation to fossilization/diagenesis. This study investigates the Rare Earth Element (REE) and other High-Field-Strength Element (HFSE) composition of euhedral crystals formed on the surface of conodont elements compared with that of crystal-free surfaces. Euhedral crystals are by definition crystals characterized by sharp faces, developing solids that, for apatite, assume the form of hexagonal prisms, reflecting its crystal symmetry. Late Ordovician (Amorphognathus ordovicicus Zone) conodonts from two localities in Sardinia and the Carnic Alps (Italy) are herein investigated. Conodont elements reveal the occurrence of smooth surfaces and surfaces partially covered with euhedral crystals. Since euhedral crystals did not reasonably grow during the organism’s lifetime, the REE and HFSE analysis can provide important insights into the crystal growth process. The experimental results indicated a substantial contribution of diagenetic imprinting for all the analyzed material, although more evident on euhedral crystals that are significantly enriched in middle and, subordinately, in heavy REE with respect to smooth surfaces. The positive correlations between La + Th vs log[ΣREE] and Ce + Th vs log[ΣREE] could support the hypothesis that the neoformed euhedral crystals grew also by depleting the pristine bioapatite of the conodont elements. Nevertheless, the occurrence of two types of apatite cannot be ruled out: euhedral crystals as neoformed products of diagenetic processes and smooth surfaces as remains of the pristine conodont bioapatite after diagenesis

    To be or not to be a conodont. The controversial story of Pseudooneotodus and Eurytholia

    Get PDF
    The genus Pseudooneotodus (Drygant, 1974) is a genus of small and conical elements widely distributed from the Middle Ordovician to the Early Devonian throughout the world. Because of its unusual shape, Pseudooneotodus has long been considered enigmatic, and only in the late nineties of the last century the genus has been finally placed within conodonts according to histological data. This study investigates possible similarities between Pseudooneotodus and Eurytholia (Sutton et al., 2001), an incertae sedis genus of enigmatic plates with a phosphate composition. An association of over one hundred specimens of Pseudooneotodus beckmanni and Eurytholia bohemica was analyzed from conodont residues in two distinct geographical areas: the Prague Basin (Požáry and Mušlovka sections, Bohemia, Czech Republic) and the Carnic Alps (Rauchkofel Boden section, Austria). Through an investigation that combines the use of optical and electron microscopy (including focused ion beam scanning electron microscopy), X-ray microdiffraction, and trace element (HFSE) analysis by mass spectrometry, differences between these fossil groups were observed and compared with data resulting from typical conodonts (Dapsilodus obliquicostatus, Panderodus unicostatus and Wurmiella excavata) recovered from the same samples

    How Much Can We Trust Major Element Quantification in Bioapatite Investigation?

    Get PDF
    Bioapatite is probably the key factor in the unreplicated success of vertebrates. Chemical data on bioapatite composition can be achieved on a solid sample by using different analytical tools such as spectroscopic and spectrometric methods. As analytical outputs can be affected by the physical-chemical characteristics of the sample matrix, an internal standard is usually required to correct and validate the results. Bioapatite lattice can accommodate iso- and heterovalent substitutions during life or diagenesis varying its chemical composition through (geological) time. If on the one hand, this makes bioapatite a unique archive of physical and chemical information for both the living cycle and the events occurring after death, on the other, it excludes the identification of a sole internal standard. Here, we propose a method to measure major element concentration with specific care for P, Ca, Mg, Na, K, Si, Al, and Fe, which are the main substituent atoms in bioapatite, through homemade matrix-matched external calibration standards for laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). We tested the method on living and fossil shark teeth, critically comparing the results obtained using other analytical techniques and certified external standards. We demonstrated that matrix-matched calibration in LA-ICPMS is mandatory for obtaining a reliable chemical characterization even if factors such as matrix aggregation variability, diverse presence of volatile compounds, the fossilization footprint, and the instrumental variability can represent further variability parameters

    3D Bioprinting for Musculoskeletal Applications

    Get PDF
    This review focuses on developments in the field of bioprinting for musculoskeletal tissue engineering, along with discussion on the various approaches for bone, cartilage and connective tissue fabrication. All approaches (cell-laden, cell-free and a combination of both) aim to obtain a complex, living tissues able to develop and mature, using the same fundamental technology. To date, co-printing of cell-laden and cell-free materials has been revealed to be the most promising approach for musculoskeletal applications because materials with good bioactivity and good mechanical strength can be combined within the same constructs. Bioprinting for musculoskeletal applications is a developing field, and detailed discussion on the current challenges and future perspectives is also presented in this review

    Structural properties of adsorbent phyllosilicates rule the entrapping ability of intercalated iron-phenanthroline complex towards thiols

    Get PDF
    The interaction of volatile organic sulfur derivatives, such as 1-heptanethiol (C7H16S), with clay minerals treated with a μ-oxo Fe3+-phenanthroline 1:1 complex results strongly affected by crystal chemical properties of pristine mineral phases. In particular, two sepiolite clays with different structural features demonstrated significantly different ability to immobilize the Fe3+-phenanthroline complex at two pH values (pH = 5.4 and pH = 2.3). The most effective binding was obtained with sepiolite with higher structural disorder at pH 5.4. Accordingly, the resulting hybrid material showed also the greatest efficiency in removal of thiol in gas phase. A direct correlation can be established between the adsorption of the Fe3+-phenanthroline complex and the gas binding process at room temperature. In fact, 1-heptanethiol entrapping occurs via redox reactions between Fe3+ and a first thiol molecule to give the reduced Fe2+-phenanthroline complex and disulfide, followed by the binding of further thiols to the reduced metal centre. The extremely high amount of thiol immobilized by the hybrid material also suggests the co-presence of a catalytic mechanism that guarantees the reoxidation of Fe+2 to Fe+3 and the restoration of redox reactions with thiol. Investigation and conclusions were supported by the several experimental techniques: elemental analysis, X-ray powder diffraction analyses, UV–Vis measurements, FT-IR and NMR spectroscopies, thermogravimetric analyses

    Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration

    Get PDF
    Bone regeneration requires porous and mechanically stable scaffolds to support tissue integration and angiogenesis, which is essential for bone tissue regeneration. With the advent of additive manufacturing process, production of complex porous architecture has become feasible. However, a balance has to be sorted between porous architecture and mechanical stability which facilitates bone regeneration for load bearing applications. 
 Current study evaluates used of high resolution digital light processing (DLP) -based additive manufacturing to produce complex but mechanical stable scaffolds based on β-tricalcium phosphate (β-TCP) for bone regeneration. 
 Four different geometries, a rectilinear Grid, hexagonal Kagome, schwart primitive and hollow Schwarz are designed with 400 µm pores and 75 or 50 vol.% porosity. However after initial screening for design stability and mechanical properties, only a rectilinear Grid structure, a hexagonal Kagome structure are found to be reproducible and showed higher mechanical properties. 
 Micro computed tomography (µ-CT) analysis shows < 2 vol.% error in porosity and < 6 % relative deviation of average pore sizes for the Grid structures. At 50 vol.% porosity, this architecture also has the highest compressive strength of 44.7 MPa (Weibull modulus is 5.28), while bulk specimens reach 235 ± 37 MPa. 
 To evaluate suitability of 3D scaffolds produce by DLP methods for bone regeneration, scaffolds were cultured with murine preosteoblastic MC3T3-E1 cells. Short term study showed cells growth over 14 days, with more than two-fold increase of alkaline phosphatase (ALP) activity compared to cells on 2D tissue culture plastic. Collagen deposition was increased by a factor of 1.5 – 2 when compared to the 2D controls. This confirm retention of biocompatible and osteo-inductive properties of β-TCP following DLP process. 
 This study has implications for designing of the high resolution porous scaffolds for bone regenerative applications and contributes to understanding of DLP based additive manufacturing process for medical applications

    Phosphorylated cofilin-2 is more prone to oxidative modifications on Cys39 and favors amyloid fibril formation

    Get PDF
    Cofilins are small protein of the actin depolymerizing family. Actin polymerization/depolymerization is central to a number of critical cellular physiological tasks making cofilin a key protein for several physiological functions of the cell. Cofilin activity is mainly regulated by phosphorylation on serine residue 3 making this post-translational modification key to the regulation of myofilament integrity. In fact, in this form, the protein segregates in myocardial aggregates in human idiopathic dilated cardiomyopathy. Since myofilament network is an early target of oxidative stress we investigated the molecular changes induced by oxidation on cofilin isoforms and their interplay with the protein phosphorylation state to get insight on whether/how those changes may predispose to early protein aggregation. Using different and complementary approaches we characterized the aggregation properties of cofilin-2 and its phosphomimetic variant (S3D) in response to oxidative stress in silico, in vitro and on isolated cardiomyocytes. We found that the phosphorylated (inactive) form of cofilin-2 is mechanistically linked to the formation of an extended network of fibrillar structures induced by oxidative stress via the formation of a disulfide bond between Cys39 and Cys80. Such phosphorylation-dependent effect is likely controlled by changes in the hydrogen bonding network involving Cys39. We found that the sulfide ion inhibits the formation of such structures. This might represent the mechanism for the protective effect of the therapeutic agent Na2S on ischemic injury

    Interlayer-confined Cu(II) complex as an efficient and long-lasting catalyst for oxidation of H2s on montmorillonite

    Get PDF
    Removal of highly toxic H2S for pollution control and operational safety is a pressing need. For this purpose, a montmorillonite intercalated with Cu(II)-phenanthroline complex [Cu[(Phen)(H2O)2]2+ (Mt-CuPhen) was prepared to capture gaseous H2S under mild conditions. This hybrid material was simple to obtain and demonstrated an outstanding ability to entrap H2S at room temperature, retaining high efficiency for a very long time (up to 36.8 g of S/100 g Mt-CuPhen after 3 months of exposure). Sorbent and H2S uptake were investigated by elemental analysis, X-ray powder diffraction measurements, diffuse reflectance (DR) UV\u2013Vis and infrared spectroscopy, thermal analysis and evolved gas mass spectrometry, scanning electron microscopy equipped with energy-dispersive X-ray spectrometer, and X-ray absorption spectroscopy. The H2S capture was studied over time and a mechanism of action was proposed. The entrapping involves a catalytic mechanism in which [Cu[(Phen)(H2O)2]2+ acts as catalyst for H2S oxidation to S0 by atmospheric oxygen. The low cost and the long-lasting performance for H2S removal render Mt-CuPhen an extremely appealing trap for H2S removal and a promising material for many technological applications

    Electrochemical data on redox properties of human Cofilin-2 and its Mutant S3D

    Get PDF
    The reported data are related to a research paper entitled "Phosphorylated cofilin-2 is more prone to oxidative modifications on Cys39 and favors amyloid fibril formation" [1]. Info about the formation and redox properties of the disulfide bridge of a protein is quite difficult to obtain and only in a few cases was it possible to observe a cyclic voltammetry (CV) signal [2,3]. Human cofilin-2 contains two cysteines (Cys39 and Cys80) which can be oxidized in suitable conditions and form a disulfide bridge [1]. For this purpose, CV measurements were carried out on human cofilin-2 WT and its mutant S3D immobilized on a gold electrode coated by an anionic self-assembled monolayer (SAM), after a pre-oxidation time which was fundamental for observing a CV signal relating to the oxidation/reduction process of the disulfide bridge of the proteins. The data include CV curves obtained with and without electrochemical pre-oxidation and after oxidation with H2O2. In addition, the plot of the cathodic peak current vs. electrochemical pre-oxidation time and the pH dependence of the formal potential (E°’) are reported. The data obtained by CV measurements were used to determine the time required to form the disulfide bridge for the immobilized proteins and, consequently, to observe the CV signal, to calculate the E°’ values and analyse the pH dependence of E°’. The electrochemical data were provided which will be useful for further electrochemical investigations regarding proteins bearing disulfide bridge(s) or cysteines prone to oxidation

    Zinc incorporation in the miliolid foraminifer Pseudotriloculina rotunda under laboratory conditions

    Get PDF
    The incorporation rate of Zn into the calcareous tests of Pseudotriloculina rotunda was investigated in culture in order to evaluate the possibility of using Zn/Ca ratios as a pollution proxy. Foraminifera were incubated at zinc concentrations up to 10-fold higher than unpolluted seawater (sea + 10 mg Zn/L) during 70 days. New calcite was investigated under the Environmental Scanning Electron Microscope (ESEM), for potential alteration of test structure. Laser ablation-Inductively Coupled Plasma-Mass spectrometry (LA-ICP-MS) was used to quantify Zn contents. The analyses revealed that test structure is not visibly altered by the presence of zinc. However, significant Zn incorporation is detected by the LA-ICP-MS. The zinc partition coefficient, DZn, decreases at increasing Zn concentrations (from 4.03 ± 0.06 to 0.2 ± 0.01) and the zinc is incorporated into the calcite not necessarily linearly
    • …
    corecore