8,066 research outputs found

    Evolved stars and the origin of abundance trends in planet hosts

    Get PDF
    Tentative evidence that the properties of evolved stars with planets may be different from what we know for MS hosts has been recently reported. We aim to test whether evolved stars with planets show any chemical peculiarity that could be related to the planet formation process. We determine in a consistent way the metallicity and individual abundances of a large sample of evolved (subgiants and red giants) and MS stars with and without known planetary companions. No differences in the vs. condensation temperature (Tc) slopes are found between the samples of planet and non-planet hosts when all elements are considered. However, if the analysis is restricted to only refractory elements, differences in the Tc-slopes between stars with and without known planets are found. This result is found to be dependent on the stellar evolutionary stage, as it holds for MS and subgiant stars, while there seem to be no difference between planet and non-planet hosts among the sample of giants. A search for correlations between the Tc-slope and the stellar properties reveals significant correlations with the stellar mass and the stellar age. The data also suggest that differences in terms of mass and age between MS planet and non-planet hosts may be present. Our results are well explained by radial mixing in the Galaxy. The sample of giant contains stars more massive and younger than their MS counterparts. This leads to a sample of stars possibly less contaminated by stars not born in the solar neighbourhood, leading to no chemical differences between planet and non planet hosts. The sample of MS stars may contain more stars from the outer disc (specially the non-planet host sample) which might led to the differences observed in the chemical trends.Comment: Accepted for publication by Astronomy and Astrophysic

    Chemical fingerprints of hot Jupiter planet formation

    Get PDF
    The current paradigm to explain the presence of Jupiters with small orbital periods (P << 10 days; hot Jupiters) that involves their formation beyond the snow line following inward migration, has been challenged by recent works that explored the possibility of in situ formation. We aim to test whether stars harbouring hot Jupiters and stars with more distant gas-giant planets show any chemical peculiarity that could be related to different formation processes. Our results show that stars with hot Jupiters have higher metallicities than stars with cool distant gas-giant planets in the metallicity range +0.00/+0.20 dex. The data also shows a tendency of stars with cool Jupiters to show larger abundances of α\alpha elements. No abundance differences between stars with cool and hot Jupiters are found when considering iron peak, volatile elements or the C/O, and Mg/Si ratios. The corresponding pp-values from the statistical tests comparing the cumulative distributions of cool and hot planet hosts are 0.20, << 0.01, 0.81, and 0.16 for metallicity, α\alpha, iron-peak, and volatile elements, respectively. We confirm previous works suggesting that more distant planets show higher planetary masses as well as larger eccentricities. We note differences in age and spectral type between the hot and cool planet hosts samples that might affect the abundance comparison. The differences in the distribution of planetary mass, period, eccentricity, and stellar host metallicity suggest a different formation mechanism for hot and cool Jupiters. The slightly larger α\alpha abundances found in stars harbouring cool Jupiters might compensate their lower metallicities allowing the formation of gas-giant planets.Comment: Accepted by Astronomy & Astrophysic

    Connecting substellar and stellar formation. The role of the host star's metallicity

    Get PDF
    Most of our current understanding of the planet formation mechanism is based on the planet metallicity correlation derived mostly from solar-type stars harbouring gas-giant planets. To achieve a far more reaching grasp on the substellar formation process we aim to analyse in terms of their metallicity a diverse sample of stars (in terms of mass and spectral type) covering the whole range of possible outcomes of the planet formation process (from planetesimals to brown dwarfs and low-mass binaries). Our methodology is based on the use of high-precision stellar parameters derived by our own group in previous works from high-resolution spectra by using the iron ionisation and equilibrium conditions. All values are derived in an homogeneous way, except for the M dwarfs where a methodology based on the use of pseudo equivalent widths of spectral features was used. Our results show that as the mass of the substellar companion increases the metallicity of the host star tendency is to lower values. The same trend is maintained when analysing stars with low-mass stellar companions and a tendency towards a wide range of host star's metallicity is found for systems with low mass planets. We also confirm that more massive planets tend to orbit around more massive stars. The core-accretion formation mechanism for planet formation achieves its maximum efficiency for planets with masses in the range 0.2 and 2 MJup_{\rm Jup}. Substellar objects with higher masses have higher probabilities of being formed as stars. Low-mass planets and planetesimals might be formed by core-accretion even around low-metallicity stars.Comment: Accepted by A&

    Tunnel spectroscopy in ac-driven quantum dot nanoresonators

    Full text link
    Electronic transport in a triple quantum dot shuttle device in the presence of an ac field is analyzed within a fully quantum mechanical framework. A generalized density matrix formalism is used to describe the time evolution for electronic state occupations in a dissipative phonon bath. In the presence of an ac gate voltage, the electronic states are dressed by photons and the interplay between photon and vibrational sidebands produces current characteristics that obey selection rules. Varying the ac parameters allows to tune the tunneling current features. In particular, we show that coherent destruction of tunneling can be achieved in our device

    Searching for signatures of planet formation in stars with circumstellar debris discs

    Get PDF
    (Abridged) Tentative correlations between the presence of dusty debris discs and low-mass planets have been presented. In parallel, detailed chemical abundance studies have reported different trends between samples of planet and non-planet hosts. We determine in a homogeneous way the metallicity, and abundances of a sample of 251 stars including stars with known debris discs, with debris discs and planets, and only with planets. Stars with debris discs and planets have the same [Fe/H] behaviour as stars hosting planets, and they also show a similar -Tc trend. Different behaviour in the -Tc trend is found between the samples of stars without planets and the samples of planet hosts. In particular, when considering only refractory elements, negative slopes are shown in cool giant planet hosts, whilst positive ones are shown in stars hosting low-mass planets. Stars hosting exclusively close-in giant planets show higher metallicities and positive -Tc slope. A search for correlations between the -Tc slopes and the stellar properties reveals a moderate but significant correlation with the stellar radius and as well as a weak correlation with the stellar age. The fact that stars with debris discs and stars with low-mass planets do not show neither metal enhancement nor a different -Tc trend might indicate a correlation between the presence of debris discs and the presence of low-mass planets. We extend results from previous works which reported differences in the -Tc trends between planet hosts and non hosts. However, these differences tend to be present only when the star hosts a cool distant planet and not in stars hosting exclusively low-mass planets.Comment: Accepted for publication in Astronomy and Astrophysic

    Strict Liability and Informed Consent: Don\u27t Say I Didn\u27t Tell You So!

    Get PDF
    The purpose of this article is the cogent presentation of the arguments favoring application of contemporary strict tort liability concepts to the doctrine of informed consent. While not a panacea, adoption of this proposal would afford the consumer of medical services the requisite protection to make an effective, informed medical choice, while lending consistency and certainty to the physician, long harrassed, both morally and legally, by doubts as to what constitutes an informed consent. This author will assume, arguendo, for the purpose of this article that all physicians are good-faith, competent practitioners. However, the reader should be forewarned: The existing requirement that medical consumers render an informed consent constitutes a knotty and complex problem, both ethically and legally, for the most conscientious and competent medical practitioner. Entrusting enforcement of the existing informed consent laws to the few physicians who fail to adhere to the high standards promulgated by the medical profession can be likened to deploying the fox to guard the henhouse. Likewise, the reader should note that the proposed standard of strict tort liability applies only to the situation in which the physician has failed to adequately advise the patient of the attendant risks of the proposed treatment, and not to a physician\u27s liability for treatment where informed consent has been obtained

    On mass transfer in extractive distillation with ionic liquids

    Get PDF

    Inspiration Mining: Intersecting Improbable Connections in a New Landscape of Cultural Reflection and Influence

    Get PDF
    This article aims to present a critical reflection on the collaborative curatorship of the exhibition “Intersecting Improbable Connections”. It is a transdisciplinary exhibition covering architecture, design, arts, among other fields, and calls for non-linear productive thinking strategies. It explores the intersection of unlikely relationships to inspire memorable visits to museums, and it feeds the Inspædia platform, creating a new landscape of reflection and cultural influence. It advocates a new concept of exhibition curation that minimizes costs (because it does not involve transportation or insurance for the pieces) and is intended to help stimulate creative processes. Based on a selection of content from the participating museums’ permanent exhibitions, duly marked with QR Codes, visitors can access that content that is already available on the Inspædia platform and explore potentially endless connections, without losing contact with the physical object (and vice versa).FCT – Fundação para a Ciência e a Tecnologia, in the scope of the projects SFRH/BPD/98427/2013, UID/EAT/04008/ 2019, and UID/AUR/04026/201
    • …
    corecore