100 research outputs found

    Evolution of the pygmy dipole resonance in nuclei with neutron excess

    Full text link
    The electric dipole excitation of various nuclei is calculated with a Random Phase Approximation phenomenological approach. The evolution of the strength distribution in various groups of isotopes, oxygen, calcium, zirconium and tin, is studied. The neutron excess produces E1E1 strength in the low energy region. Indexes to measure the collectivity of the excitation are defined. We studied the behavior of proton and neutron transition densities to determine the isoscalar or isovector nature of the excitation. We observed that in medium-heavy nuclei the low-energy E1E1 excitation has characteristics rather different that those exhibited by the giant dipole resonance. This new type of excitation can be identified as pygmy dipole resonance.Comment: 14 pages, 12 figures, 7 table

    Evolution of the pygmy dipole resonance in nuclei with neutron excess

    Get PDF
    The electric dipole excitation of various nuclei is calculated with a Random Phase Approximation phenomenological approach. The evolution of the strength distribution in various groups of isotopes, oxygen, calcium, zirconium and tin, is studied. The neutron excess produces E1E1 strength in the low energy region. Indexes to measure the collectivity of the excitation are defined. We studied the behavior of proton and neutron transition densities to determine the isoscalar or isovector nature of the excitation. We observed that in medium-heavy nuclei the low-energy E1E1 excitation has characteristics rather different that those exhibited by the giant dipole resonance. This new type of excitation can be identified as pygmy dipole resonance.Comment: 14 pages, 12 figures, 7 table

    Pionic correlations and meson-exchange currents in two-particle emission induced by electron scattering

    Get PDF
    Two-particle two-hole contributions to electromagnetic response functions are computed in a fully relativistic Fermi gas model. All one-pion exchange diagrams that contribute to the scattering amplitude in perturbation theory are considered, including terms for pionic correlations and meson-exchange currents (MEC). The pionic correlation terms diverge in an infinite system and thus are regularized by modification of the nucleon propagator in the medium to take into account the finite size of the nucleus. The pionic correlation contributions are found to be of the same order of magnitude as the MEC.Comment: 14 pages, 15 figure

    Meson-exchange currents and final-state interactions in quasielastic electron scattering at high momentum transfers

    Get PDF
    The effects of meson-exchange currents (MEC) are computed for the one-particle one-hole transverse response function for finite nuclei at high momentum transfers qq in the region of the quasielastic peak. A semi-relativistic shell model is used for the one-particle-emission (e,e)(e,e') reaction. Relativistic effects are included using relativistic kinematics, performing a semi-relativistic expansion of the current operators and using the Dirac-equation-based (DEB) form of the relativistic mean field potential for the final states. It is found that final-state interactions (FSI) produce an important enhancement of the MEC in the high-energy tail of the response function for q1q\geq 1 GeV/c. The combined effect of MEC and FSI goes away when other models of the FSI, not based on the DEB potential, are employed.Comment: 4 pages, 5 figure

    Superscaling of non-quasielastic electron-nucleus scattering

    Get PDF
    The present study is focused on the superscaling behavior of electron-nucleus cross sections in the region lying above the quasielastic peak, especially the region dominated by electroexcitation of the Delta. Non-quasielastic cross sections are obtained from all available high-quality data for Carbon 12 by subtracting effective quasielastic cross sections based on the superscaling hypothesis. These residuals are then compared with results obtained within a scaling-based extension of the relativistic Fermi gas model, including an investigation of violations of scaling of the first kind in the region above the quasielastic peak. A way potentially to isolate effects related to meson-exchange currents by subtracting both impulsive quasielastic and impulsive inelastic contributions from the experimental cross sections is also presented.Comment: RevTeX, 34 pages including 11 figure

    Superscaling in charged current neutrino quasielastic scattering in the relativistic impulse approximation

    Get PDF
    Superscaling of the quasielastic cross section in charged current neutrino-nucleus reactions at energies of a few GeV is investigated within the framework of the relativistic impulse approximation. Several approaches are used to describe final state interactions and comparisons are made with the plane wave approximation. Superscaling is very successful in all cases. The scaling function obtained using a relativistic mean field for the final states shows an asymmetric shape with a long tail extending towards positive values of the scaling variable, in excellent agreement with the behavior presented by the experimental scaling function.Comment: 5 pages, 4 figures, accepted for publicacion in PRL Text modified and references adde

    Semi-relativistic description of quasielastic neutrino reactions and superscaling in a continuum shell model

    Get PDF
    The so-called semi-relativistic expansion of the weak charged current in powers of the initial nucleon momentum is performed to describe charge-changing, quasielastic neutrino reactions (νμ,μ)(\nu_\mu,\mu^-) at intermediate energies. The quality of the expansion is tested by comparing with the relativistic Fermi gas model using several choices of kinematics of interest for ongoing neutrino oscillation experiments. The new current is then implemented in a continuum shell model together with relativistic kinematics to investigate the scaling properties of (e,e)(e,e') and (νμ,μ)(\nu_\mu,\mu^-) cross sections.Comment: 33 pages, 10 figures, to appear in PR

    Superscaling and Charge-changing Neutrino Cross Sections

    Full text link
    The superscaling function extracted from inclusive electron scattering data is used to predict high energy charge-changing neutrino cross sections in the quasi-elastic and Δ\Delta regions.Comment: 3 pages, 2 figures, to appear in the Proceedings of the 7th International Workshop on Neutrino Factories and Superbeams, Laboratori Nazionali di Frascati, Frascati (Rome), June 21 - 26, 200

    Low-lying magnetic excitations of doubly-closed-shell nuclei and nucleon-nucleon effective interactions

    Full text link
    We have studied the low lying magnetic spectra of 12C, 16O, 40Ca, 48Ca and 208Pb nuclei within the Random Phase Approximation (RPA) theory, finding that the description of low-lying magnetic states of doubly-closed-shell nuclei imposes severe constraints on the spin and tensor terms of the nucleon-nucleon effective interaction. We have first made an investigation by using four phenomenological effective interactions and we have obtained good agreement with the experimental magnetic spectra, and, to a lesser extent, with the electron scattering responses. Then we have made self-consistent RPA calculations to test the validity of the finite-range D1 Gogny interaction. For all the nuclei under study we have found that this interaction inverts the energies of all the magnetic states forming isospin doublets.Comment: 19 pages, 13 figures, 7 tables, accepted for publication in Phys. Rev.
    corecore