8,348 research outputs found
Topological equivalence of crystal and quasicrystal band structures
A number of recent articles have reported the existence of topologically
non-trivial states and associated end states in one-dimensional incommensurate
lattice models that would usually only be expected in higher dimensions. Using
an explicit construction, we here argue that the end states have precisely the
same origin as their counterparts in commensurate models and that
incommensurability does not in fact provide a meaningful connection to the
topological classification of systems in higher dimensions. In particular, we
show that it is possible to smoothly interpolate between states with
commensurate and incommensurate modulation parameters without closing the band
gap and without states crossing the band gap.Comment: 7 pages, 9 figures. Editors' Suggestio
Angular Normal Modes of a Circular Coulomb Cluster
We investigate the angular normal modes for small oscillations about an
equilibrium of a single-component coulomb cluster confined by a radially
symmetric external potential to a circle. The dynamical matrix for this system
is a Laplacian symmetrically circulant matrix and this result leads to an
analytic solution for the eigenfrequencies of the angular normal modes. We also
show the limiting dependence of the largest eigenfrequency for large numbers of
particles
Planar Ion Trap Geometry for Microfabrication
We describe a novel high aspect ratio radiofrequency linear ion trap geometry
that is amenable to modern microfabrication techniques. The ion trap electrode
structure consists of a pair of stacked conducting cantilevers resulting in
confining fields that take the form of fringe fields from parallel plate
capacitors. The confining potentials are modeled both analytically and
numerically. This ion trap geometry may form the basis for large scale quantum
computers or parallel quadrupole mass spectrometers.
PACS: 39.25.+k, 03.67.Lx, 07.75.+h, 07.10+CmComment: 14 pages, 16 figure
Strong Orientation Effects in Ionization of H by Short, Intense, High-Frequency Light Sources
We present three dimensional time-dependent calculations of ionization of
arbitrarily spatially oriented H by attosecond, intense, high-frequency
laser fields. The ionization probability shows a strong dependence on both the
internuclear distance and the relative orientation between the laser field and
the internuclear axis.Comment: 4 pages, 4 figure
Strangelets: Who is Looking, and How?
It has been over 30 years since the first suggestion that the true ground
state of cold hadronic matter might be not nuclear matter but rather strange
quark matter (SQM). Ever since, searches for stable SQM have been proceeding in
various forms and have observed a handful of interesting events but have
neither been able to find compelling evidence for stable strangelets nor to
rule out their existence. I will survey the current status and near future of
such searches with particular emphasis on the idea of SQM from strange star
collisions as part of the cosmic ray flux.Comment: Talk given at International Conference on Strangeness in Quark
Matter, 2006. 8 pages. 1 figur
A Cosmological Three Level Neutrino Laser
We present a calculation of a neutrino decay scenario in the early Universe.
The specific decay is \nu_{2} \to \nu_{1} + \phi, where \phi is a boson. If
there is a neutrino mass hierarchy, m_{\nu_{e}} < m_{\nu_{\mu}} <
m_{\nu_{\tau}}, we show that it is possible to generate stimulated decay and
effects similar to atomic lasing without invoking new neutrinos, even starting
from identical neutrino distributions. Under the right circumstances the decay
can be to very low momentum boson states thereby producing something similar to
a Bose condensate, with possible consequences for structure formation. Finally,
we argue that this type of decay may also be important other places in early
Universe physics.Comment: 7 pages, RevTex, due for publication in Phys. Rev. D, April 15 issu
Control and femtosecond time-resolved imaging of torsion in a chiral molecule
We study how the combination of long and short laser pulses, can be used to
induce torsion in an axially chiral biphenyl derivative
(3,5-difluoro-3',5'-dibromo-4'-cyanobiphenyl). A long, with respect to the
molecular rotational periods, elliptically polarized laser pulse produces 3D
alignment of the molecules, and a linearly polarized short pulse initiates
torsion about the stereogenic axis. The torsional motion is monitored in
real-time by measuring the dihedral angle using femtosecond time-resolved
Coulomb explosion imaging. Within the first 4 picoseconds, torsion occurs with
a period of 1.25 picoseconds and an amplitude of 3 degrees in excellent
agreement with theoretical calculations. At larger times the quantum states of
the molecules describing the torsional motion dephase and an almost isotropic
distribution of the dihedral angle is measured. We demonstrate an original
application of covariance analysis of two-dimensional ion images to reveal
strong correlations between specific ejected ionic fragments from Coulomb
explosion. This technique strengthens our interpretation of the experimental
data.Comment: 11 pages, 9 figure
The Strange Star Surface: A Crust with Nuggets
We reexamine the surface composition of strange stars. Strange quark stars
are hypothetical compact stars which could exist if strange quark matter was
absolutely stable. It is widely accepted that they are characterized by an
enormous density gradient ( g/cm) and large electric fields at
surface. By investigating the possibility of realizing a heterogeneous crust,
comprised of nuggets of strange quark matter embedded in an uniform electron
background, we find that the strange star surface has a much reduced density
gradient and negligible electric field. We comment on how our findings will
impact various proposed observable signatures for strange stars.Comment: 4 pages, 2 figure
- …