92 research outputs found

    MTHFR polymorphisms in gastric cancer and in first-degree relatives of patients with gastric cancer

    Get PDF
    Two common mutations, 677 C→T and a1298 A→C, in the methylenetetrahydrofolate reductase gene (MTHFR) reduce the activity of MTHFR and folate metabolism. Familial aggregation in a variable but significant proportion of gastric cancer (GC) cases suggests the importance of genetic predisposition in determining risk. In this study, we evaluate MTHFR polymorphisms in 57 patients with a diagnosis of GC, in 37 with a history of GC in first-degree relatives (GC-relatives), and in 454 blood donors. Helicobacter pylori (HP) infection was also determined. An increased risk was found for 677TT in GC patients with respect to blood donors (odds ratio (OR) = 1.98), and statistical significance was sustained when we compared sex–age-matched GC patients and donors (OR = 2.37). The 677TT genotype association with GC was found in women (OR = 3.10), while a reduction in the 667C allele frequency was present in both the sex. No statistically significant association was detected when 677–1298 genotype was stratified by sex and age. Men of GC-relatives showed a higher 1298C allele frequency than donors (OR = 4.38). Between GC and GC-relatives, HP infection frequency was similar. In conclusion, overall findings support the hypothesis that folate plays a role in GC risk. GC-relatives evidence a similar 677TT frequency to that found in the general population

    Dietary intake of folate, vitamin B6, and vitamin B12, genetic polymorphism of related enzymes, and risk of breast cancer: a case-control study in Brazilian women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have determined that dietary intake of B vitamins may be associated with breast cancer risk as a result of interactions between <it>5,10-methylenetetrahydrofolate reductase (MTHFR) </it>and <it>methionine synthase </it>(<it>MTR</it>) in the one-carbon metabolism pathway. However, the association between B vitamin intake and breast cancer risk in Brazilian women in particular has not yet been investigated.</p> <p>Methods</p> <p>A case-control study was conducted in São Paulo, Brazil, with 458 age-matched pairs of Brazilian women. Energy-adjusted intakes of folate, vitamin B<sub>6</sub>, and vitamin B<sub>12 </sub>were derived from a validated Food Frequency Questionnaire (FFQ). Genotyping was completed for <it>MTHFR </it>A1298C and C677T, and <it>MTR </it>A2756G polymorphisms. A logistical regression model was used to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs).</p> <p>Results</p> <p>Neither dietary intake of folate, vitamin B<sub>6</sub>, or vitamin B<sub>12 </sub>nor <it>MTHFR </it>polymorphisms were independently associated with breast cancer risk. Analysis stratified by menopausal status showed a significant association between placement in the highest tertile of folate intake and risk of breast cancer in premenopausal women (OR = 2.17, 95% CI: 1.23–3.83; <it>P</it><sub><it>trend </it></sub>= 0.010). The <it>MTR </it>2756GG genotype was associated with a higher risk of breast cancer than the 2756AA genotype (OR = 1.99, 95% CI = 1.01–3.92; <it>P</it><sub><it>trend </it></sub>= 0.801), and statistically significant interactions with regard to risk were observed between the <it>MTHFR </it>A1298C polymorphism and folate (P = 0.024) or vitamin B<sub>6 </sub>(P = 0.043), and between the <it>MTHFR </it>C677T polymorphism and folate (P = 0.043) or vitamin B<sub>12 </sub>(P = 0.022).</p> <p>Conclusion</p> <p><it>MTHFR </it>polymorphisms and dietary intake of folate, vitamin B<sub>6</sub>, and vitamin B<sub>12 </sub>had no overall association with breast cancer risk. However, increased risk was observed in total women with the <it>MTR </it>2756GG genotype and in premenopausal women with high folate intake. These findings, as well as significant interactions between <it>MTHFR </it>polymorphisms and B vitamins, warrant further investigation.</p

    Key enzymes catalyzing glycerol to 1,3-propanediol

    Full text link

    Factors involved in vivo and in vitro maturation of canine oocytes

    No full text
    The domestic dog could be a valuable model for studying and developing assisted reproduction in taxonomically related endangered Canids. However, the efficiency of in vitro oocyte maturation is very low in this species compared to that of other mammalian species and this limits the development of reproductive biotechnologies, such as in vitro embryo production, cryopreservation, or nucleus transfer. In canine species the female gamete has unique characteristics: the oocyte is exposed to high concentration of progesterone in the follicular environment, it is ovulated in the dictyate state, and resumes and completes meiosis in the oviduct. Therefore, optimum conditions for in vitro maturation of dog oocytes may differ from other mammalian models in which follicles, where estrogens are the dominant hormones, ovulate oocytes at the Metaphase II stage of the first meiotic division. An in vitro culture system needs to be based on in vivo conditions in order to create a microenvironment similar to that in which oocyte development occurs physiologically, but little is known on mechanisms regulating oocyte maturation in the dog. This review analyzes the known factors involved in canine oocyte maturation in vivo and in vitro in order to suggest on which aspects future investigations may be focused
    corecore