13,352 research outputs found
Relative phase stability and lattice dynamics of NaNbO from first-principles calculations
We report total energy calculations for different crystal structures of
NaNbO over a range of unit cell volumes using the all-electron
full-potential (L)APW method. We employed both the local-density approximation
(LDA) and the Wu-Cohen form of the generalized gradient approximation (GGA-WC)
to test the accuracy of these functionals for the description of the complex
structural behavior of NaNbO. We found that LDA not only underestimates the
equilibrium volume of the system but also predicts an incorrect ground state
for this oxide. The GGA-WC functional, on the other hand, significantly
improves the equilibrium volume and provides relative phase stability in better
agreement with experiments. We then use the GGA-WC functional for the
calculation of the phonon dispersion curves of cubic NaNbO to identify the
presence of structural instabilities in the whole Brillouin zone. Finally, we
report comparative calculations of structural instabilities as a function of
volume in NaNbO and KNbO to provide insights for the understanding of
the structural behavior of KNaNbO solid solutions.Comment: Accepted for publication in Physical Review
Estimations for the Single Diffractive production of the Higgs boson at the Tevatron and the LHC
The single diffractive production of the standard model Higgs boson is
computed using the diffractive factorization formalism, taking into account a
parametrization for the Pomeron structure function provided by the H1
Collaboration. We compute the cross sections at next-to-leading order accuracy
for the gluon fusion process, which includes QCD and electroweak corrections.
The gap survival probability () is also introduced to account for
the rescattering corrections due to spectator particles present in the
interaction, and to this end we compare two different models for the survival
factor. The diffractive ratios are predicted for proton-proton collisions at
the Tevatron and the LHC for the Higgs boson mass of = 120 GeV.
Therefore, our results provide updated estimations for the diffractive ratios
of the single diffractive production of the Higgs boson in the Tevatron and LHC
kinematical regimes.Comment: 20 pages, 6 figures, 3 table
Three-dimensional aspects of fluid flows in channels. II. Effects of Meniscus and Thin Film regimes on Viscous Fingers
We perform a three-dimensional study of steady state viscous fingers that
develop in linear channels. By means of a three-dimensional Lattice-Boltzmann
scheme that mimics the full macroscopic equations of motion of the fluid
momentum and order parameter, we study the effect of the thickness of the
channel in two cases. First, for total displacement of the fluids in the
channel thickness direction, we find that the steady state finger is
effectively two-dimensional and that previous two-dimensional results can be
recovered by taking into account the effect of a curved meniscus across the
channel thickness as a contribution to surface stresses. Secondly, when a thin
film develops in the channel thickness direction, the finger narrows with
increasing channel aspect ratio in agreement with experimental results. The
effect of the thin film renders the problem three-dimensional and results
deviate from the two-dimensional prediction.Comment: 9 pages, 10 figure
The Quest for an Intermediate-Scale Accidental Axion and Further ALPs
The recent detection of the cosmic microwave background polarimeter
experiment BICEP2 of tensor fluctuations in the B-mode power spectrum basically
excludes all plausible axion models where its decay constant is above
GeV. Moreover, there are strong theoretical, astrophysical, and cosmological
motivations for models involving, in addition to the axion, also axion-like
particles (ALPs), with decay constants in the intermediate scale range, between
GeV and GeV. Here, we present a general analysis of models
with an axion and further ALPs and derive bounds on the relative size of the
axion and ALP photon (and electron) coupling. We discuss what we can learn from
measurements of the axion and ALP photon couplings about the fundamental
parameters of the underlying ultraviolet completion of the theory. For the
latter we consider extensions of the Standard Model in which the axion and the
ALP(s) appear as pseudo Nambu-Goldstone bosons from the breaking of global
chiral (Peccei-Quinn (PQ)) symmetries, occuring accidentally as low
energy remnants from exact discrete symmetries. In such models, the axion and
the further ALP are protected from disastrous explicit symmetry breaking
effects due to Planck-scale suppressed operators. The scenarios considered
exploit heavy right handed neutrinos getting their mass via PQ symmetry
breaking and thus explain the small mass of the active neutrinos via a seesaw
relation between the electroweak and an intermediate PQ symmetry breaking
scale. We show some models that can accommodate simultaneously an axion dark
matter candidate, an ALP explaining the anomalous transparency of the universe
for -rays, and an ALP explaining the recently reported 3.55 keV gamma
line from galaxies and clusters of galaxies, if the respective decay constants
are of intermediate scale.Comment: 43pp, 4 figures. v2: version accepted for publication in JHE
- …