16 research outputs found

    Pedestrian Modelling in NetLogo

    No full text

    An Agent-Based Decision Support Environment for Public Health

    No full text

    Multi Agent Environment for Modelling and Testing of Cooperative Behaviour of Agents

    No full text

    Simulating customer experience and word-of-mouth in retail: a case study

    Get PDF
    Agents offer a new and exciting way of understanding the world of work. In this paper we describe the development of agent-based simulation models, designed to help to understand the relationship between people management practices and retail performance. We report on the current development of our simulation models which includes new features concerning the evolution of customers over time. To test the features we have conducted a series of experiments dealing with customer pool sizes, standard and noise reduction modes, and the spread of customers’ word of mouth. To validate and evaluate our model, we introduce new performance measure specific to retail operations. We show that by varying different parameters in our model we can simulate a range of customer experiences leading to significant differences in performance measures. Ultimately, we are interested in better understanding the impact of changes in staff behavior due to changes in store management practices. Our multi-disciplinary research team draws upon expertise from work psychologists and computer scientists. Despite the fact we are working within a relatively novel and complex domain, it is clear that intelligent agents offer potential for fostering sustainable organizational capabilities in the future

    A Flexible Agent-Based Framework for Infectious Disease Modeling

    No full text
    Part 1: Information & Communication Technology-EurAsia Conference 2014, ICT-EurAsia 2014International audienceAgent-based modeling is a method to model a system by autonomous entities. The proposed framework models single persons with personal behavior, different health states and ability to spread the disease. Upon simulation, the epidemic emerges automatically. This approach is clear and easily understandable but requires extensive knowledge of the epidemic’s background. Such real-world model structures produce realistic epidemics, allowing detailed examination of the transmission process or testing and analyzing the outcome of interventions like vaccinations. Due to changed epidemic propagation, effects like herd immunity or serotype shift arise automatically. Beyond that, a modular structure splits the model into parts, which can be developed and validated separately. This approach makes development more efficient, increases credibility of the results and allows reusability and exchangeability of existing modules. Thus, knowledge and models can be easily and efficiently transferred, for example to compute scenarios for different countries and similar diseases
    corecore