19 research outputs found

    Optimizing Clinical Benefits of Bisphosphonates in Cancer Patients with Bone Metastases

    Get PDF
    Malignant bone disease is common in patients with advanced solid tumors or multiple myeloma. Bisphosphonates have been found to be important treatments for bone metastases. A positive benefit-risk ratio for bisphosphonates has been established, and ongoing clinical trials will determine whether individualized therapy is possible

    Taming Honey Birds? The Regulation of Global Indicators

    No full text

    Metastatic bone pain: treatment options with an emphasis on bisphosphonates

    Full text link
    INTRODUCTION: One of the key targets for metastatic cancer cells is the skeleton. Once metastatic cells are established within the bone matrix, skeletal integrity becomes increasingly compromised. Bone lesions lead to various complications, including bone pain, fractures and spinal cord compression. MECHANISMS OF BONE PAIN: Bone pain is debilitating and affects quality of life of the patient. In addition, it increases the use of health care resources. Many patients with metastatic bone disease experience substantial bone pain despite state-of-the-art systemic analgesic treatment. Incident pain is the predominant pain syndrome. TREATMENT OPTIONS FOR BONE PAIN: Typically, this syndrome requires moderate baseline analgesia with increased on-demand doses. Other techniques for treating bone pain, including radiation therapy, neuraxial application of analgesics, nerve blocks and local stabilisation procedures, should be considered. In addition, therapy with bisphosphonates targeting bone-specific pain is an important strategy. This review discusses the various management options for bone pain arising from metastatic bone disease

    Planck intermediate results. III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    No full text
    We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal DA2 Y500 for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an MWL - DA2 Y500 relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R500 are on average ~ 20 percent larger than the corresponding weak lensing masses, which is contrary to expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods and, for the present sample, that the mass discrepancy and difference in mass concentration are especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations
    corecore