186 research outputs found

    Land cover harmonization using Latent Dirichlet Allocation

    Get PDF
    Large-area land cover maps are produced to satisfy different information needs. Land cover maps having partial or complete spatial and/or temporal overlap, different legends, and varying accuracies for similar classes, are increasingly common. To address these concerns and combine two 30-m resolution land cover products, we implemented a harmonization procedure using a Latent Dirichlet Allocation (LDA) model. The LDA model used regionalized class co-occurrences from multiple maps to generate a harmonized class label for each pixel by statistically characterizing land attributes from the class co-occurrences. We evaluated multiple harmonization approaches: using the LDA model alone and in combination with more commonly used information sources for harmonization (i.e. error matrices and semantic affinity scores). The results were compared with the benchmark maps generated using simple legend crosswalks and showed that using LDA outputs with error matrices performed better and increased harmonized map overall accuracy by 6–19% for areas of disagreement between the source maps. Our results revealed the importance of error matrices to harmonization, since excluding error matrices reduced overall accuracy by 4–20%. The LDA-based harmonization approach demonstrated in this paper is quantitative, transparent, portable, and efficient at leveraging the strengths of multiple land cover maps over large areas

    Representative Landscapes in the Forested Area of Canada

    Get PDF
    Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada’s land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative—or “exemplar”—from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada’s ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada’s forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach

    The Laegeren site: an augmented forest laboratory combining 3-D reconstruction and radiative transfer models for trait-based assessment of functional diversity

    Full text link
    Given the increased pressure on forests and their diversity in the context of global change, new ways of monitoring diversity are needed. Remote sensing has the potential to inform essential biodiversity variables on the global scale, but validation of data and products, particularly in remote areas, is difficult. We show how radiative transfer (RT) models, parameterized with a detailed 3-D forest reconstruction based on laser scanning, can be used to upscale leaf-level information to canopy scale. The simulation approach is compared with actual remote sensing data, showing very good agreement in both the spectral and spatial domains. In addition, we compute a set of physiological and morphological traits from airborne imaging spectroscopy and laser scanning data and show how these traits can be used to estimate the functional richness of a forest at regional scale. The presented RT modeling framework has the potential to prototype and validate future spaceborne observation concepts aimed at informing variables of biodiversity, while the trait-based mapping of diversity could augment in situ networks of diversity, providing effective spatiotemporal gap filling for a comprehensive assessment of changes to diversity

    Rapid characterisation of vegetation structure to predict refugia and climate change impacts across a global biodiversity hotspot

    Get PDF
    Identification of refugia is an increasingly important adaptation strategy in conservation planning under rapid anthropogenic climate change. Granite outcrops (GOs) provide extraordinary diversity, including a wide range of taxa, vegetation types and habitats in the Southwest Australian Floristic Region (SWAFR). However, poor characterization of GOs limits the capacity of conservation planning for refugia under climate change. A novel means for the rapid identification of potential refugia is presented, based on the assessment of local-scale environment and vegetation structure in a wider region. This approach was tested on GOs across the SWAFR. Airborne discrete return Light Detection And Ranging (LiDAR) data and Red Green and Blue (RGB) imagery were acquired. Vertical vegetation profiles were used to derive 54 structural classes. Structural vegetation types were described in three areas for supervised classification of a further 13 GOs across the region.Habitat descriptions based on 494 vegetation plots on and around these GOs were used to quantify relationships between environmental variables, ground cover and canopy height. The vegetation surrounding GOs is strongly related to structural vegetation types (Kappa = 0.8) and to its spatial context. Water gaining sites around GOs are characterized by taller and denser vegetation in all areas. The strong relationship between rainfall, soil-depth, and vegetation structure (R2 of 0.8–0.9) allowed comparisons of vegetation structure between current and future climate. Significant shifts in vegetation structural types were predicted and mapped for future climates. Water gaining areas below granite outcrops were identified as important putative refugia. A reduction in rainfall may be offset by the occurrence of deeper soil elsewhere on the outcrop. However, climate change interactions with fire and water table declines may render our conclusions conservative. The LiDAR-based mapping approach presented enables the integration of site-based biotic assessment with structural vegetation types for the rapid delineation and prioritization of key refugia

    Impacts of past abrupt land change on local biodiversity globally

    Get PDF
    Abrupt land change, such as deforestation or agricultural intensification, is a key driver of biodiversity change. Following abrupt land change, local biodiversity often continues to be influenced through biotic lag effects. However, current understanding of how terrestrial biodiversity is impacted by past abrupt land changes is incomplete. Here we show that abrupt land change in the past continues to influence present species assemblages globally. We combine geographically and taxonomically broad data on local biodiversity with quantitative estimates of abrupt land change detected within time series of satellite imagery from 1982 to 2015. Species richness and abundance were 4.2% and 2% lower, respectively, and assemblage composition was altered at sites with an abrupt land change compared to unchanged sites, although impacts differed among taxonomic groups. Biodiversity recovered to levels comparable to unchanged sites after >10 years. Ignoring delayed impacts of abrupt land changes likely results in incomplete assessments of biodiversity change

    Tree biomass in the Swiss landscape: nationwide modelling for improved accounting for forest and non-forest trees

    Get PDF
    Trees outside forest (TOF) can perform a variety of social, economic and ecological functions including carbon sequestration. However, detailed quantification of tree biomass is usually limited to forest areas. Taking advantage of structural information available from stereo aerial imagery and airborne laser scanning (ALS), this research models tree biomass using national forest inventory data and linear least-square regression and applies the model both inside and outside of forest to create a nationwide model for tree biomass (above ground and below ground). Validation of the tree biomass model against TOF data within settlement areas shows relatively low model performance (R (2) of 0.44) but still a considerable improvement on current biomass estimates used for greenhouse gas inventory and carbon accounting. We demonstrate an efficient and easily implementable approach to modelling tree biomass across a large heterogeneous nationwide area. The model offers significant opportunity for improved estimates on land use combination categories (CC) where tree biomass has either not been included or only roughly estimated until now. The ALS biomass model also offers the advantage of providing greater spatial resolution and greater within CC spatial variability compared to the current nationwide estimates. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10661-017-5816-7) contains supplementary material, which is available to authorized users
    corecore