4 research outputs found

    Organizing XML data in a wireless broadcast system by exploiting structural similarities

    Get PDF
    Wireless data broadcast is an efficient way of delivering data of common interest to a large population of mobile devices within a proximate area, such as smart cities, battle fields, etc. In this work, we focus ourselves on studying the data placement problem of periodic XML data broadcast in mobile and wireless environments. This is an important issue, particularly when XML becomes prevalent in today’s ubiquitous and mobile computing devices and applications. Taking advantage of the structured characteristics of XML data, effective broadcast programs can be generated based on the XML data on the server only. An XML data broadcast system is developed and a theoretical analysis on the XML data placement on a wireless channel is also presented, which forms the basis of the novel data placement algorithm in this work. The proposed algorithm is validated through a set of experiments. The results show that the proposed algorithm can effectively place XML data on air and significantly improve the overall access efficiency

    SPRINT: A Tool to Generate Concurrent Transaction-Level Models from Sequential Code

    Get PDF
    A high-level concurrent model such as a SystemC transaction-level model can provide early feedback during the exploration of implementation alternatives for state-of-the-art signal processing applications like video codecs on a multiprocessor platform. However, the creation of such a model starting from sequential code is a time-consuming and error-prone task. It is typically done only once, if at all, for a given design. This lack of exploration of the design space often leads to a suboptimal implementation. To support our systematic C-based design flow, we have developed a tool to generate a concurrent SystemC transaction-level model for user-selected task boundaries. Using this tool, different parallelization alternatives have been evaluated during the design of an MPEG-4 simple profile encoder and an embedded zero-tree coder. Generation plus evaluation of an alternative was possible in less than six minutes. This is fast enough to allow extensive exploration of the design space

    An Overview of SOM Literature

    No full text
    corecore